1097 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1097 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|   adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
 | |
|   monitoring
 | |
|   Based on lm75.c and lm85.c
 | |
|   Supports adm1030 / adm1031
 | |
|   Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
 | |
|   Reworked by Jean Delvare <khali@linux-fr.org>
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation; either version 2 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   This program is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with this program; if not, write to the Free Software
 | |
|   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
| */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/hwmon.h>
 | |
| #include <linux/hwmon-sysfs.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| /* Following macros takes channel parameter starting from 0 to 2 */
 | |
| #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
 | |
| #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
 | |
| #define ADM1031_REG_PWM			(0x22)
 | |
| #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
 | |
| #define ADM1031_REG_FAN_FILTER		(0x23)
 | |
| 
 | |
| #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
 | |
| #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
 | |
| #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
 | |
| #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
 | |
| 
 | |
| #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
 | |
| #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
 | |
| 
 | |
| #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
 | |
| 
 | |
| #define ADM1031_REG_CONF1		0x00
 | |
| #define ADM1031_REG_CONF2		0x01
 | |
| #define ADM1031_REG_EXT_TEMP		0x06
 | |
| 
 | |
| #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
 | |
| #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
 | |
| #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
 | |
| 
 | |
| #define ADM1031_CONF2_PWM1_ENABLE	0x01
 | |
| #define ADM1031_CONF2_PWM2_ENABLE	0x02
 | |
| #define ADM1031_CONF2_TACH1_ENABLE	0x04
 | |
| #define ADM1031_CONF2_TACH2_ENABLE	0x08
 | |
| #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
 | |
| 
 | |
| #define ADM1031_UPDATE_RATE_MASK	0x1c
 | |
| #define ADM1031_UPDATE_RATE_SHIFT	2
 | |
| 
 | |
| /* Addresses to scan */
 | |
| static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
 | |
| 
 | |
| enum chips { adm1030, adm1031 };
 | |
| 
 | |
| typedef u8 auto_chan_table_t[8][2];
 | |
| 
 | |
| /* Each client has this additional data */
 | |
| struct adm1031_data {
 | |
| 	struct device *hwmon_dev;
 | |
| 	struct mutex update_lock;
 | |
| 	int chip_type;
 | |
| 	char valid;		/* !=0 if following fields are valid */
 | |
| 	unsigned long last_updated;	/* In jiffies */
 | |
| 	unsigned int update_interval;	/* In milliseconds */
 | |
| 	/* The chan_select_table contains the possible configurations for
 | |
| 	 * auto fan control.
 | |
| 	 */
 | |
| 	const auto_chan_table_t *chan_select_table;
 | |
| 	u16 alarm;
 | |
| 	u8 conf1;
 | |
| 	u8 conf2;
 | |
| 	u8 fan[2];
 | |
| 	u8 fan_div[2];
 | |
| 	u8 fan_min[2];
 | |
| 	u8 pwm[2];
 | |
| 	u8 old_pwm[2];
 | |
| 	s8 temp[3];
 | |
| 	u8 ext_temp[3];
 | |
| 	u8 auto_temp[3];
 | |
| 	u8 auto_temp_min[3];
 | |
| 	u8 auto_temp_off[3];
 | |
| 	u8 auto_temp_max[3];
 | |
| 	s8 temp_offset[3];
 | |
| 	s8 temp_min[3];
 | |
| 	s8 temp_max[3];
 | |
| 	s8 temp_crit[3];
 | |
| };
 | |
| 
 | |
| static int adm1031_probe(struct i2c_client *client,
 | |
| 			 const struct i2c_device_id *id);
 | |
| static int adm1031_detect(struct i2c_client *client,
 | |
| 			  struct i2c_board_info *info);
 | |
| static void adm1031_init_client(struct i2c_client *client);
 | |
| static int adm1031_remove(struct i2c_client *client);
 | |
| static struct adm1031_data *adm1031_update_device(struct device *dev);
 | |
| 
 | |
| static const struct i2c_device_id adm1031_id[] = {
 | |
| 	{ "adm1030", adm1030 },
 | |
| 	{ "adm1031", adm1031 },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, adm1031_id);
 | |
| 
 | |
| /* This is the driver that will be inserted */
 | |
| static struct i2c_driver adm1031_driver = {
 | |
| 	.class		= I2C_CLASS_HWMON,
 | |
| 	.driver = {
 | |
| 		.name = "adm1031",
 | |
| 	},
 | |
| 	.probe		= adm1031_probe,
 | |
| 	.remove		= adm1031_remove,
 | |
| 	.id_table	= adm1031_id,
 | |
| 	.detect		= adm1031_detect,
 | |
| 	.address_list	= normal_i2c,
 | |
| };
 | |
| 
 | |
| static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
 | |
| {
 | |
| 	return i2c_smbus_read_byte_data(client, reg);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
 | |
| {
 | |
| 	return i2c_smbus_write_byte_data(client, reg, value);
 | |
| }
 | |
| 
 | |
| 
 | |
| #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
 | |
| 					((val + 500) / 1000)))
 | |
| 
 | |
| #define TEMP_FROM_REG(val)		((val) * 1000)
 | |
| 
 | |
| #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
 | |
| 
 | |
| #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
 | |
| #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
 | |
| 						      (val) | 0x70 : (val))
 | |
| 
 | |
| #define FAN_FROM_REG(reg, div)		((reg) ? (11250 * 60) / ((reg) * (div)) : 0)
 | |
| 
 | |
| static int FAN_TO_REG(int reg, int div)
 | |
| {
 | |
| 	int tmp;
 | |
| 	tmp = FAN_FROM_REG(SENSORS_LIMIT(reg, 0, 65535), div);
 | |
| 	return tmp > 255 ? 255 : tmp;
 | |
| }
 | |
| 
 | |
| #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
 | |
| 
 | |
| #define PWM_TO_REG(val)			(SENSORS_LIMIT((val), 0, 255) >> 4)
 | |
| #define PWM_FROM_REG(val)		((val) << 4)
 | |
| 
 | |
| #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
 | |
| #define FAN_CHAN_TO_REG(val, reg)	\
 | |
| 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
 | |
| 
 | |
| #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
 | |
| 	((((val)/500) & 0xf8)|((reg) & 0x7))
 | |
| #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1<< ((reg)&0x7)))
 | |
| #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
 | |
| 
 | |
| #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
 | |
| 
 | |
| #define AUTO_TEMP_OFF_FROM_REG(reg)		\
 | |
| 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
 | |
| 
 | |
| #define AUTO_TEMP_MAX_FROM_REG(reg)		\
 | |
| 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
 | |
| 	AUTO_TEMP_MIN_FROM_REG(reg))
 | |
| 
 | |
| static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
 | |
| {
 | |
| 	int ret;
 | |
| 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
 | |
| 
 | |
| 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
 | |
| 	ret = ((reg & 0xf8) |
 | |
| 	       (range < 10000 ? 0 :
 | |
| 		range < 20000 ? 1 :
 | |
| 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* FAN auto control */
 | |
| #define GET_FAN_AUTO_BITFIELD(data, idx)	\
 | |
| 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx%2]
 | |
| 
 | |
| /* The tables below contains the possible values for the auto fan
 | |
|  * control bitfields. the index in the table is the register value.
 | |
|  * MSb is the auto fan control enable bit, so the four first entries
 | |
|  * in the table disables auto fan control when both bitfields are zero.
 | |
|  */
 | |
| static const auto_chan_table_t auto_channel_select_table_adm1031 = {
 | |
| 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 | |
| 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
 | |
| 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
 | |
| 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
 | |
| 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
 | |
| };
 | |
| 
 | |
| static const auto_chan_table_t auto_channel_select_table_adm1030 = {
 | |
| 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
 | |
| 	{ 2 /* 0b10 */		, 0 },
 | |
| 	{ 0xff /* invalid */	, 0 },
 | |
| 	{ 0xff /* invalid */	, 0 },
 | |
| 	{ 3 /* 0b11 */		, 0 },
 | |
| };
 | |
| 
 | |
| /* That function checks if a bitfield is valid and returns the other bitfield
 | |
|  * nearest match if no exact match where found.
 | |
|  */
 | |
| static int
 | |
| get_fan_auto_nearest(struct adm1031_data *data,
 | |
| 		     int chan, u8 val, u8 reg, u8 * new_reg)
 | |
| {
 | |
| 	int i;
 | |
| 	int first_match = -1, exact_match = -1;
 | |
| 	u8 other_reg_val =
 | |
| 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
 | |
| 
 | |
| 	if (val == 0) {
 | |
| 		*new_reg = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		if ((val == (*data->chan_select_table)[i][chan]) &&
 | |
| 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
 | |
| 		     other_reg_val)) {
 | |
| 			/* We found an exact match */
 | |
| 			exact_match = i;
 | |
| 			break;
 | |
| 		} else if (val == (*data->chan_select_table)[i][chan] &&
 | |
| 			   first_match == -1) {
 | |
| 			/* Save the first match in case of an exact match has
 | |
| 			 * not been found
 | |
| 			 */
 | |
| 			first_match = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (exact_match >= 0) {
 | |
| 		*new_reg = exact_match;
 | |
| 	} else if (first_match >= 0) {
 | |
| 		*new_reg = first_match;
 | |
| 	} else {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t show_fan_auto_channel(struct device *dev,
 | |
| 				     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| set_fan_auto_channel(struct device *dev, struct device_attribute *attr,
 | |
| 		     const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 	u8 reg;
 | |
| 	int ret;
 | |
| 	u8 old_fan_mode;
 | |
| 
 | |
| 	old_fan_mode = data->conf1;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 
 | |
| 	if ((ret = get_fan_auto_nearest(data, nr, val, data->conf1, ®))) {
 | |
| 		mutex_unlock(&data->update_lock);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 | |
| 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
 | |
| 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
 | |
| 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE){
 | |
| 			/* Switch to Auto Fan Mode
 | |
| 			 * Save PWM registers
 | |
| 			 * Set PWM registers to 33% Both */
 | |
| 			data->old_pwm[0] = data->pwm[0];
 | |
| 			data->old_pwm[1] = data->pwm[1];
 | |
| 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
 | |
| 		} else {
 | |
| 			/* Switch to Manual Mode */
 | |
| 			data->pwm[0] = data->old_pwm[0];
 | |
| 			data->pwm[1] = data->old_pwm[1];
 | |
| 			/* Restore PWM registers */
 | |
| 			adm1031_write_value(client, ADM1031_REG_PWM,
 | |
| 					    data->pwm[0] | (data->pwm[1] << 4));
 | |
| 		}
 | |
| 	}
 | |
| 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
 | |
| 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static SENSOR_DEVICE_ATTR(auto_fan1_channel, S_IRUGO | S_IWUSR,
 | |
| 		show_fan_auto_channel, set_fan_auto_channel, 0);
 | |
| static SENSOR_DEVICE_ATTR(auto_fan2_channel, S_IRUGO | S_IWUSR,
 | |
| 		show_fan_auto_channel, set_fan_auto_channel, 1);
 | |
| 
 | |
| /* Auto Temps */
 | |
| static ssize_t show_auto_temp_off(struct device *dev,
 | |
| 				  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
 | |
| }
 | |
| static ssize_t show_auto_temp_min(struct device *dev,
 | |
| 				  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
 | |
| }
 | |
| static ssize_t
 | |
| set_auto_temp_min(struct device *dev, struct device_attribute *attr,
 | |
| 		  const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
 | |
| 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 | |
| 			    data->auto_temp[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| static ssize_t show_auto_temp_max(struct device *dev,
 | |
| 				  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
 | |
| }
 | |
| static ssize_t
 | |
| set_auto_temp_max(struct device *dev, struct device_attribute *attr,
 | |
| 		  const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]);
 | |
| 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
 | |
| 			    data->temp_max[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #define auto_temp_reg(offset)						\
 | |
| static SENSOR_DEVICE_ATTR(auto_temp##offset##_off, S_IRUGO,		\
 | |
| 		show_auto_temp_off, NULL, offset - 1);			\
 | |
| static SENSOR_DEVICE_ATTR(auto_temp##offset##_min, S_IRUGO | S_IWUSR,	\
 | |
| 		show_auto_temp_min, set_auto_temp_min, offset - 1);	\
 | |
| static SENSOR_DEVICE_ATTR(auto_temp##offset##_max, S_IRUGO | S_IWUSR,	\
 | |
| 		show_auto_temp_max, set_auto_temp_max, offset - 1)
 | |
| 
 | |
| auto_temp_reg(1);
 | |
| auto_temp_reg(2);
 | |
| auto_temp_reg(3);
 | |
| 
 | |
| /* pwm */
 | |
| static ssize_t show_pwm(struct device *dev,
 | |
| 			struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 | |
| }
 | |
| static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 | |
| 		       const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 	int reg;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
 | |
| 	    (((val>>4) & 0xf) != 5)) {
 | |
| 		/* In automatic mode, the only PWM accepted is 33% */
 | |
| 		mutex_unlock(&data->update_lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	data->pwm[nr] = PWM_TO_REG(val);
 | |
| 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
 | |
| 	adm1031_write_value(client, ADM1031_REG_PWM,
 | |
| 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
 | |
| 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 0);
 | |
| static SENSOR_DEVICE_ATTR(pwm2, S_IRUGO | S_IWUSR, show_pwm, set_pwm, 1);
 | |
| static SENSOR_DEVICE_ATTR(auto_fan1_min_pwm, S_IRUGO | S_IWUSR,
 | |
| 		show_pwm, set_pwm, 0);
 | |
| static SENSOR_DEVICE_ATTR(auto_fan2_min_pwm, S_IRUGO | S_IWUSR,
 | |
| 		show_pwm, set_pwm, 1);
 | |
| 
 | |
| /* Fans */
 | |
| 
 | |
| /*
 | |
|  * That function checks the cases where the fan reading is not
 | |
|  * relevant.  It is used to provide 0 as fan reading when the fan is
 | |
|  * not supposed to run
 | |
|  */
 | |
| static int trust_fan_readings(struct adm1031_data *data, int chan)
 | |
| {
 | |
| 	int res = 0;
 | |
| 
 | |
| 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
 | |
| 		switch (data->conf1 & 0x60) {
 | |
| 		case 0x00:	/* remote temp1 controls fan1 remote temp2 controls fan2 */
 | |
| 			res = data->temp[chan+1] >=
 | |
| 			      AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
 | |
| 			break;
 | |
| 		case 0x20:	/* remote temp1 controls both fans */
 | |
| 			res =
 | |
| 			    data->temp[1] >=
 | |
| 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
 | |
| 			break;
 | |
| 		case 0x40:	/* remote temp2 controls both fans */
 | |
| 			res =
 | |
| 			    data->temp[2] >=
 | |
| 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
 | |
| 			break;
 | |
| 		case 0x60:	/* max controls both fans */
 | |
| 			res =
 | |
| 			    data->temp[0] >=
 | |
| 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
 | |
| 			    || data->temp[1] >=
 | |
| 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
 | |
| 			    || (data->chip_type == adm1031
 | |
| 				&& data->temp[2] >=
 | |
| 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		res = data->pwm[chan] > 0;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| static ssize_t show_fan(struct device *dev,
 | |
| 			struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	int value;
 | |
| 
 | |
| 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
 | |
| 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
 | |
| 	return sprintf(buf, "%d\n", value);
 | |
| }
 | |
| 
 | |
| static ssize_t show_fan_div(struct device *dev,
 | |
| 			    struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
 | |
| }
 | |
| static ssize_t show_fan_min(struct device *dev,
 | |
| 			    struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       FAN_FROM_REG(data->fan_min[nr],
 | |
| 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
 | |
| }
 | |
| static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 | |
| 			   const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	if (val) {
 | |
| 		data->fan_min[nr] =
 | |
| 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
 | |
| 	} else {
 | |
| 		data->fan_min[nr] = 0xff;
 | |
| 	}
 | |
| 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
 | |
| 			   const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val = simple_strtol(buf, NULL, 10);
 | |
| 	u8 tmp;
 | |
| 	int old_div;
 | |
| 	int new_min;
 | |
| 
 | |
| 	tmp = val == 8 ? 0xc0 :
 | |
| 	      val == 4 ? 0x80 :
 | |
| 	      val == 2 ? 0x40 :
 | |
| 	      val == 1 ? 0x00 :
 | |
| 	      0xff;
 | |
| 	if (tmp == 0xff)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	/* Get fresh readings */
 | |
| 	data->fan_div[nr] = adm1031_read_value(client,
 | |
| 					       ADM1031_REG_FAN_DIV(nr));
 | |
| 	data->fan_min[nr] = adm1031_read_value(client,
 | |
| 					       ADM1031_REG_FAN_MIN(nr));
 | |
| 
 | |
| 	/* Write the new clock divider and fan min */
 | |
| 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
 | |
| 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
 | |
| 	new_min = data->fan_min[nr] * old_div / val;
 | |
| 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
 | |
| 
 | |
| 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
 | |
| 			    data->fan_div[nr]);
 | |
| 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
 | |
| 			    data->fan_min[nr]);
 | |
| 
 | |
| 	/* Invalidate the cache: fan speed is no longer valid */
 | |
| 	data->valid = 0;
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #define fan_offset(offset)						\
 | |
| static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 | |
| 		show_fan, NULL, offset - 1);				\
 | |
| static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 | |
| 		show_fan_min, set_fan_min, offset - 1);			\
 | |
| static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR,		\
 | |
| 		show_fan_div, set_fan_div, offset - 1)
 | |
| 
 | |
| fan_offset(1);
 | |
| fan_offset(2);
 | |
| 
 | |
| 
 | |
| /* Temps */
 | |
| static ssize_t show_temp(struct device *dev,
 | |
| 			 struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	int ext;
 | |
| 	ext = nr == 0 ?
 | |
| 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
 | |
| 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
 | |
| 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
 | |
| }
 | |
| static ssize_t show_temp_offset(struct device *dev,
 | |
| 				struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
 | |
| }
 | |
| static ssize_t show_temp_min(struct device *dev,
 | |
| 			     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 | |
| }
 | |
| static ssize_t show_temp_max(struct device *dev,
 | |
| 			     struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 | |
| }
 | |
| static ssize_t show_temp_crit(struct device *dev,
 | |
| 			      struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
 | |
| }
 | |
| static ssize_t set_temp_offset(struct device *dev,
 | |
| 			       struct device_attribute *attr, const char *buf,
 | |
| 			       size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val;
 | |
| 
 | |
| 	val = simple_strtol(buf, NULL, 10);
 | |
| 	val = SENSORS_LIMIT(val, -15000, 15000);
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
 | |
| 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
 | |
| 			    data->temp_offset[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val;
 | |
| 
 | |
| 	val = simple_strtol(buf, NULL, 10);
 | |
| 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->temp_min[nr] = TEMP_TO_REG(val);
 | |
| 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
 | |
| 			    data->temp_min[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val;
 | |
| 
 | |
| 	val = simple_strtol(buf, NULL, 10);
 | |
| 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->temp_max[nr] = TEMP_TO_REG(val);
 | |
| 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
 | |
| 			    data->temp_max[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| static ssize_t set_temp_crit(struct device *dev, struct device_attribute *attr,
 | |
| 			     const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	int nr = to_sensor_dev_attr(attr)->index;
 | |
| 	int val;
 | |
| 
 | |
| 	val = simple_strtol(buf, NULL, 10);
 | |
| 	val = SENSORS_LIMIT(val, -55000, nr == 0 ? 127750 : 127875);
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->temp_crit[nr] = TEMP_TO_REG(val);
 | |
| 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
 | |
| 			    data->temp_crit[nr]);
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| #define temp_reg(offset)						\
 | |
| static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 | |
| 		show_temp, NULL, offset - 1);				\
 | |
| static SENSOR_DEVICE_ATTR(temp##offset##_offset, S_IRUGO | S_IWUSR,	\
 | |
| 		show_temp_offset, set_temp_offset, offset - 1);		\
 | |
| static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 | |
| 		show_temp_min, set_temp_min, offset - 1);		\
 | |
| static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 | |
| 		show_temp_max, set_temp_max, offset - 1);		\
 | |
| static SENSOR_DEVICE_ATTR(temp##offset##_crit, S_IRUGO | S_IWUSR,	\
 | |
| 		show_temp_crit, set_temp_crit, offset - 1)
 | |
| 
 | |
| temp_reg(1);
 | |
| temp_reg(2);
 | |
| temp_reg(3);
 | |
| 
 | |
| /* Alarms */
 | |
| static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", data->alarm);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
 | |
| 
 | |
| static ssize_t show_alarm(struct device *dev,
 | |
| 			  struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	int bitnr = to_sensor_dev_attr(attr)->index;
 | |
| 	struct adm1031_data *data = adm1031_update_device(dev);
 | |
| 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
 | |
| }
 | |
| 
 | |
| static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 0);
 | |
| static SENSOR_DEVICE_ATTR(fan1_fault, S_IRUGO, show_alarm, NULL, 1);
 | |
| static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 2);
 | |
| static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
 | |
| static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 4);
 | |
| static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 5);
 | |
| static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
 | |
| static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 7);
 | |
| static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 8);
 | |
| static SENSOR_DEVICE_ATTR(fan2_fault, S_IRUGO, show_alarm, NULL, 9);
 | |
| static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 10);
 | |
| static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
 | |
| static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 12);
 | |
| static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 13);
 | |
| static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 14);
 | |
| 
 | |
| /* Update Interval */
 | |
| static const unsigned int update_intervals[] = {
 | |
| 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
 | |
| };
 | |
| 
 | |
| static ssize_t show_update_interval(struct device *dev,
 | |
| 				    struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 
 | |
| 	return sprintf(buf, "%u\n", data->update_interval);
 | |
| }
 | |
| 
 | |
| static ssize_t set_update_interval(struct device *dev,
 | |
| 				   struct device_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	unsigned long val;
 | |
| 	int i, err;
 | |
| 	u8 reg;
 | |
| 
 | |
| 	err = strict_strtoul(buf, 10, &val);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the nearest update interval from the table.
 | |
| 	 * Use it to determine the matching update rate.
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
 | |
| 		if (val >= update_intervals[i])
 | |
| 			break;
 | |
| 	}
 | |
| 	/* if not found, we point to the last entry (lowest update interval) */
 | |
| 
 | |
| 	/* set the new update rate while preserving other settings */
 | |
| 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 | |
| 	reg &= ~ADM1031_UPDATE_RATE_MASK;
 | |
| 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
 | |
| 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 	data->update_interval = update_intervals[i];
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
 | |
| 		   set_update_interval);
 | |
| 
 | |
| static struct attribute *adm1031_attributes[] = {
 | |
| 	&sensor_dev_attr_fan1_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan1_div.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan1_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
 | |
| 	&sensor_dev_attr_pwm1.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_max.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_max.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
 | |
| 
 | |
| 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
 | |
| 
 | |
| 	&dev_attr_update_interval.attr,
 | |
| 	&dev_attr_alarms.attr,
 | |
| 
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group adm1031_group = {
 | |
| 	.attrs = adm1031_attributes,
 | |
| };
 | |
| 
 | |
| static struct attribute *adm1031_attributes_opt[] = {
 | |
| 	&sensor_dev_attr_fan2_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan2_div.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan2_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
 | |
| 	&sensor_dev_attr_pwm2.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_input.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_max.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
 | |
| 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
 | |
| 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| static const struct attribute_group adm1031_group_opt = {
 | |
| 	.attrs = adm1031_attributes_opt,
 | |
| };
 | |
| 
 | |
| /* Return 0 if detection is successful, -ENODEV otherwise */
 | |
| static int adm1031_detect(struct i2c_client *client,
 | |
| 			  struct i2c_board_info *info)
 | |
| {
 | |
| 	struct i2c_adapter *adapter = client->adapter;
 | |
| 	const char *name;
 | |
| 	int id, co;
 | |
| 
 | |
| 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	id = i2c_smbus_read_byte_data(client, 0x3d);
 | |
| 	co = i2c_smbus_read_byte_data(client, 0x3e);
 | |
| 
 | |
| 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
 | |
| 		return -ENODEV;
 | |
| 	name = (id == 0x30) ? "adm1030" : "adm1031";
 | |
| 
 | |
| 	strlcpy(info->type, name, I2C_NAME_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int adm1031_probe(struct i2c_client *client,
 | |
| 			 const struct i2c_device_id *id)
 | |
| {
 | |
| 	struct adm1031_data *data;
 | |
| 	int err;
 | |
| 
 | |
| 	data = kzalloc(sizeof(struct adm1031_data), GFP_KERNEL);
 | |
| 	if (!data) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	i2c_set_clientdata(client, data);
 | |
| 	data->chip_type = id->driver_data;
 | |
| 	mutex_init(&data->update_lock);
 | |
| 
 | |
| 	if (data->chip_type == adm1030)
 | |
| 		data->chan_select_table = &auto_channel_select_table_adm1030;
 | |
| 	else
 | |
| 		data->chan_select_table = &auto_channel_select_table_adm1031;
 | |
| 
 | |
| 	/* Initialize the ADM1031 chip */
 | |
| 	adm1031_init_client(client);
 | |
| 
 | |
| 	/* Register sysfs hooks */
 | |
| 	if ((err = sysfs_create_group(&client->dev.kobj, &adm1031_group)))
 | |
| 		goto exit_free;
 | |
| 
 | |
| 	if (data->chip_type == adm1031) {
 | |
| 		if ((err = sysfs_create_group(&client->dev.kobj,
 | |
| 						&adm1031_group_opt)))
 | |
| 			goto exit_remove;
 | |
| 	}
 | |
| 
 | |
| 	data->hwmon_dev = hwmon_device_register(&client->dev);
 | |
| 	if (IS_ERR(data->hwmon_dev)) {
 | |
| 		err = PTR_ERR(data->hwmon_dev);
 | |
| 		goto exit_remove;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_remove:
 | |
| 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
 | |
| 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
 | |
| exit_free:
 | |
| 	kfree(data);
 | |
| exit:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int adm1031_remove(struct i2c_client *client)
 | |
| {
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 
 | |
| 	hwmon_device_unregister(data->hwmon_dev);
 | |
| 	sysfs_remove_group(&client->dev.kobj, &adm1031_group);
 | |
| 	sysfs_remove_group(&client->dev.kobj, &adm1031_group_opt);
 | |
| 	kfree(data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void adm1031_init_client(struct i2c_client *client)
 | |
| {
 | |
| 	unsigned int read_val;
 | |
| 	unsigned int mask;
 | |
| 	int i;
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 
 | |
| 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
 | |
| 	if (data->chip_type == adm1031) {
 | |
| 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
 | |
| 			ADM1031_CONF2_TACH2_ENABLE);
 | |
| 	}
 | |
| 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
 | |
| 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
 | |
| 	if ((read_val | mask) != read_val) {
 | |
| 	    adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
 | |
| 	}
 | |
| 
 | |
| 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
 | |
| 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
 | |
| 	    adm1031_write_value(client, ADM1031_REG_CONF1, read_val |
 | |
| 				ADM1031_CONF1_MONITOR_ENABLE);
 | |
| 	}
 | |
| 
 | |
| 	/* Read the chip's update rate */
 | |
| 	mask = ADM1031_UPDATE_RATE_MASK;
 | |
| 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
 | |
| 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
 | |
| 	/* Save it as update interval */
 | |
| 	data->update_interval = update_intervals[i];
 | |
| }
 | |
| 
 | |
| static struct adm1031_data *adm1031_update_device(struct device *dev)
 | |
| {
 | |
| 	struct i2c_client *client = to_i2c_client(dev);
 | |
| 	struct adm1031_data *data = i2c_get_clientdata(client);
 | |
| 	unsigned long next_update;
 | |
| 	int chan;
 | |
| 
 | |
| 	mutex_lock(&data->update_lock);
 | |
| 
 | |
| 	next_update = data->last_updated
 | |
| 	  + msecs_to_jiffies(data->update_interval);
 | |
| 	if (time_after(jiffies, next_update) || !data->valid) {
 | |
| 
 | |
| 		dev_dbg(&client->dev, "Starting adm1031 update\n");
 | |
| 		for (chan = 0;
 | |
| 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
 | |
| 			u8 oldh, newh;
 | |
| 
 | |
| 			oldh =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 | |
| 			data->ext_temp[chan] =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
 | |
| 			newh =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
 | |
| 			if (newh != oldh) {
 | |
| 				data->ext_temp[chan] =
 | |
| 				    adm1031_read_value(client,
 | |
| 						       ADM1031_REG_EXT_TEMP);
 | |
| #ifdef DEBUG
 | |
| 				oldh =
 | |
| 				    adm1031_read_value(client,
 | |
| 						       ADM1031_REG_TEMP(chan));
 | |
| 
 | |
| 				/* oldh is actually newer */
 | |
| 				if (newh != oldh)
 | |
| 					dev_warn(&client->dev,
 | |
| 						 "Remote temperature may be "
 | |
| 						 "wrong.\n");
 | |
| #endif
 | |
| 			}
 | |
| 			data->temp[chan] = newh;
 | |
| 
 | |
| 			data->temp_offset[chan] =
 | |
| 			    adm1031_read_value(client,
 | |
| 					       ADM1031_REG_TEMP_OFFSET(chan));
 | |
| 			data->temp_min[chan] =
 | |
| 			    adm1031_read_value(client,
 | |
| 					       ADM1031_REG_TEMP_MIN(chan));
 | |
| 			data->temp_max[chan] =
 | |
| 			    adm1031_read_value(client,
 | |
| 					       ADM1031_REG_TEMP_MAX(chan));
 | |
| 			data->temp_crit[chan] =
 | |
| 			    adm1031_read_value(client,
 | |
| 					       ADM1031_REG_TEMP_CRIT(chan));
 | |
| 			data->auto_temp[chan] =
 | |
| 			    adm1031_read_value(client,
 | |
| 					       ADM1031_REG_AUTO_TEMP(chan));
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
 | |
| 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
 | |
| 
 | |
| 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
 | |
| 			     | (adm1031_read_value(client, ADM1031_REG_STATUS(1))
 | |
| 				<< 8);
 | |
| 		if (data->chip_type == adm1030) {
 | |
| 			data->alarm &= 0xc0ff;
 | |
| 		}
 | |
| 
 | |
| 		for (chan=0; chan<(data->chip_type == adm1030 ? 1 : 2); chan++) {
 | |
| 			data->fan_div[chan] =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan));
 | |
| 			data->fan_min[chan] =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan));
 | |
| 			data->fan[chan] =
 | |
| 			    adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan));
 | |
| 			data->pwm[chan] =
 | |
| 			    0xf & (adm1031_read_value(client, ADM1031_REG_PWM) >>
 | |
| 				   (4*chan));
 | |
| 		}
 | |
| 		data->last_updated = jiffies;
 | |
| 		data->valid = 1;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&data->update_lock);
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static int __init sensors_adm1031_init(void)
 | |
| {
 | |
| 	return i2c_add_driver(&adm1031_driver);
 | |
| }
 | |
| 
 | |
| static void __exit sensors_adm1031_exit(void)
 | |
| {
 | |
| 	i2c_del_driver(&adm1031_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
 | |
| MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| module_init(sensors_adm1031_init);
 | |
| module_exit(sensors_adm1031_exit);
 |