DragonOS/kernel/process/process.c

402 lines
14 KiB
C
Raw Normal View History

#include "process.h"
#include "../exception/gate.h"
#include "../common/printk.h"
#include "../common/kprint.h"
#include "../syscall/syscall.h"
#include "../syscall/syscall_num.h"
#include <mm/slab.h>
#include <sched/sched.h>
2022-04-26 16:39:02 +00:00
#include <filesystem/fat32/fat32.h>
2022-04-13 09:58:06 +00:00
extern void system_call(void);
2022-04-26 05:12:59 +00:00
extern void kernel_thread_func(void);
2022-04-14 08:53:11 +00:00
ul _stack_start; // initial proc的栈基地址虚拟地址
2022-04-13 03:14:49 +00:00
struct mm_struct initial_mm = {0};
struct thread_struct initial_thread =
2022-04-14 08:53:11 +00:00
{
.rbp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
.rsp = (ul)(initial_proc_union.stack + STACK_SIZE / sizeof(ul)),
.fs = KERNEL_DS,
.gs = KERNEL_DS,
.cr2 = 0,
.trap_num = 0,
.err_code = 0};
2022-04-13 03:14:49 +00:00
// 初始化 初始进程的union ,并将其链接到.data.init_proc段内
union proc_union initial_proc_union __attribute__((__section__(".data.init_proc_union"))) = {INITIAL_PROC(initial_proc_union.pcb)};
struct process_control_block *initial_proc[MAX_CPU_NUM] = {&initial_proc_union.pcb, 0};
// 为每个核心初始化初始进程的tss
struct tss_struct initial_tss[MAX_CPU_NUM] = {[0 ... MAX_CPU_NUM - 1] = INITIAL_TSS};
/**
* @brief
*
* @param prev pcb
* @param next pcb
*
* fs和gs寄存器
*/
void __switch_to(struct process_control_block *prev, struct process_control_block *next)
{
2022-04-13 09:58:06 +00:00
initial_tss[proc_current_cpu_id].rsp0 = next->thread->rbp;
2022-04-26 05:12:59 +00:00
// kdebug("next_rsp = %#018lx ", next->thread->rsp);
// set_tss64((uint *)phys_2_virt(TSS64_Table), initial_tss[0].rsp0, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1,
// initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
__asm__ __volatile__("movq %%fs, %0 \n\t"
: "=a"(prev->thread->fs));
__asm__ __volatile__("movq %%gs, %0 \n\t"
: "=a"(prev->thread->gs));
__asm__ __volatile__("movq %0, %%fs \n\t" ::"a"(next->thread->fs));
__asm__ __volatile__("movq %0, %%gs \n\t" ::"a"(next->thread->gs));
2022-04-14 08:53:11 +00:00
// wrmsr(0x175, next->thread->rbp);
}
/**
* @brief
*
*/
void user_level_function()
{
// kinfo("Program (user_level_function) is runing...");
// kinfo("Try to enter syscall id 15...");
// enter_syscall(15, 0, 0, 0, 0, 0, 0, 0, 0);
// enter_syscall(SYS_PRINTF, (ul) "test_sys_printf\n", 0, 0, 0, 0, 0, 0, 0);
2022-04-14 08:53:11 +00:00
// while(1);
long ret = 0;
2022-04-13 09:58:06 +00:00
// printk_color(RED,BLACK,"user_level_function task is running\n");
2022-04-12 03:54:44 +00:00
/*
2022-04-26 16:39:02 +00:00
// 测试sys put string
char string[] = "User level process.\n";
long err_code = 1;
ul addr = (ul)string;
__asm__ __volatile__(
"movq %2, %%r8 \n\t"
"int $0x80 \n\t"
: "=a"(err_code)
2022-04-22 15:15:34 +00:00
: "a"(SYS_PUT_STRING), "m"(addr)
: "memory", "r8");
2022-04-26 16:39:02 +00:00
*/
while (1)
{
// 测试sys_open
char string[] = "a.txt";
long err_code = 1;
int zero = 0;
uint64_t addr = (ul)string;
__asm__ __volatile__(
"movq %2, %%r8 \n\t"
"movq %3, %%r9 \n\t"
"movq %4, %%r10 \n\t"
"movq %5, %%r11 \n\t"
"movq %6, %%r12 \n\t"
"movq %7, %%r13 \n\t"
"movq %8, %%r14 \n\t"
"movq %9, %%r15 \n\t"
"int $0x80 \n\t"
: "=a"(err_code)
: "a"(SYS_OPEN), "m"(addr), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
: "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
int fd_num = err_code;
int count = 16;
while (count)
{
uchar buf[128] = {0};
// Test sys_read
addr = (uint64_t)&buf;
__asm__ __volatile__(
"movq %2, %%r8 \n\t"
"movq %3, %%r9 \n\t"
"movq %4, %%r10 \n\t"
"movq %5, %%r11 \n\t"
"movq %6, %%r12 \n\t"
"movq %7, %%r13 \n\t"
"movq %8, %%r14 \n\t"
"movq %9, %%r15 \n\t"
"int $0x80 \n\t"
: "=a"(err_code)
: "a"(SYS_READ), "m"(fd_num), "m"(addr), "m"(count), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
: "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
count = err_code;
// 将读取到的数据打印出来
addr = (ul)buf;
__asm__ __volatile__(
"movq %2, %%r8 \n\t"
"int $0x80 \n\t"
: "=a"(err_code)
: "a"(SYS_PUT_STRING), "m"(addr)
: "memory", "r8");
}
// Test sys_close
__asm__ __volatile__(
"movq %2, %%r8 \n\t"
"movq %3, %%r9 \n\t"
"movq %4, %%r10 \n\t"
"movq %5, %%r11 \n\t"
"movq %6, %%r12 \n\t"
"movq %7, %%r13 \n\t"
"movq %8, %%r14 \n\t"
"movq %9, %%r15 \n\t"
"int $0x80 \n\t"
: "=a"(err_code)
: "a"(SYS_CLOSE), "m"(fd_num), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero), "m"(zero)
: "memory", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "rcx", "rdx");
}
while (1)
pause();
}
/**
* @brief 使
*
* @param regs
* @return ul
*/
ul do_execve(struct pt_regs *regs)
{
// 选择这两个寄存器是对应了sysexit指令的需要
regs->rip = 0x800000; // rip 应用层程序的入口地址 这里的地址选择没有特殊要求,只要是未使用的内存区域即可。
regs->rsp = 0xa00000; // rsp 应用层程序的栈顶地址
2022-04-14 08:53:11 +00:00
regs->cs = USER_CS | 3;
regs->ds = USER_DS | 3;
regs->ss = USER_DS | 0x3;
regs->rflags = 0x200246;
regs->rax = 1;
regs->es = 0;
2022-04-12 03:54:44 +00:00
// kdebug("do_execve is running...");
// 映射起始页面
// mm_map_proc_page_table(get_CR3(), true, 0x800000, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE, true);
uint64_t addr = 0x800000UL;
2022-04-14 08:53:11 +00:00
/*
unsigned long *tmp = phys_2_virt((unsigned long *)((unsigned long)get_CR3() & (~0xfffUL)) + ((addr >> PAGE_GDT_SHIFT) & 0x1ff));
2022-04-14 08:53:11 +00:00
unsigned long *virtual = kmalloc(PAGE_4K_SIZE, 0);
set_pml4t(tmp, mk_pml4t(virt_2_phys(virtual), PAGE_USER_PGT));
2022-04-14 08:53:11 +00:00
tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_1G_SHIFT) & 0x1ff));
virtual = kmalloc(PAGE_4K_SIZE, 0);
set_pdpt(tmp, mk_pdpt(virt_2_phys(virtual), PAGE_USER_DIR));
2022-04-14 08:53:11 +00:00
tmp = phys_2_virt((unsigned long *)(*tmp & (~0xfffUL)) + ((addr >> PAGE_2M_SHIFT) & 0x1ff));
struct Page *p = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED);
set_pdt(tmp, mk_pdt(p->addr_phys, PAGE_USER_PAGE));
2022-04-14 08:53:11 +00:00
flush_tlb();
*/
2022-04-14 08:53:11 +00:00
mm_map_phys_addr_user(addr, alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED)->addr_phys, PAGE_2M_SIZE, PAGE_USER_PAGE);
if (!(current_pcb->flags & PF_KTHREAD))
2022-04-26 16:39:02 +00:00
current_pcb->addr_limit = USER_MAX_LINEAR_ADDR;
// 将程序代码拷贝到对应的内存中
memcpy((void *)0x800000, user_level_function, 1024);
2022-04-12 03:54:44 +00:00
// kdebug("program copied!");
return 0;
}
/**
* @brief init进程
*
* @param arg
* @return ul
*/
ul initial_kernel_thread(ul arg)
{
2022-04-12 03:54:44 +00:00
// kinfo("initial proc running...\targ:%#018lx", arg);
2022-04-26 16:39:02 +00:00
fat32_init();
2022-04-26 05:12:59 +00:00
struct pt_regs *regs;
current_pcb->thread->rip = (ul)ret_from_system_call;
current_pcb->thread->rsp = (ul)current_pcb + STACK_SIZE - sizeof(struct pt_regs);
// current_pcb->mm->pgd = kmalloc(PAGE_4K_SIZE, 0);
// memset((void*)current_pcb->mm->pgd, 0, PAGE_4K_SIZE);
regs = (struct pt_regs *)current_pcb->thread->rsp;
2022-04-12 03:54:44 +00:00
// kdebug("current_pcb->thread->rsp=%#018lx", current_pcb->thread->rsp);
current_pcb->flags = 0;
// 将返回用户层的代码压入堆栈向rdx传入regs的地址然后jmp到do_execve这个系统调用api的处理函数 这里的设计思路和switch_proc类似
__asm__ __volatile__("movq %1, %%rsp \n\t"
"pushq %2 \n\t"
"jmp do_execve \n\t" ::"D"(current_pcb->thread->rsp),
"m"(current_pcb->thread->rsp), "m"(current_pcb->thread->rip)
: "memory");
return 1;
}
/**
* @brief 退
*
* @param code
* @return ul
*/
ul process_thread_do_exit(ul code)
{
kinfo("thread_exiting..., code is %#018lx.", code);
while (1)
;
}
/**
* @brief
*
* @param fn
* @param arg
* @param flags
* @return int
*/
int kernel_thread(unsigned long (*fn)(unsigned long), unsigned long arg, unsigned long flags)
{
struct pt_regs regs;
memset(&regs, 0, sizeof(regs));
// 在rbx寄存器中保存进程的入口地址
regs.rbx = (ul)fn;
// 在rdx寄存器中保存传入的参数
regs.rdx = (ul)arg;
regs.ds = KERNEL_DS;
regs.es = KERNEL_DS;
regs.cs = KERNEL_CS;
regs.ss = KERNEL_DS;
// 置位中断使能标志位
regs.rflags = (1 << 9);
// rip寄存器指向内核线程的引导程序
regs.rip = (ul)kernel_thread_func;
2022-04-26 05:12:59 +00:00
// kdebug("kernel_thread_func=%#018lx", kernel_thread_func);
// kdebug("&kernel_thread_func=%#018lx", &kernel_thread_func);
// kdebug("1111\tregs.rip = %#018lx", regs.rip);
return do_fork(&regs, flags, 0, 0);
}
/**
* @brief
*
*/
void process_init()
{
kinfo("Initializing process...");
initial_mm.pgd = (pml4t_t *)global_CR3;
initial_mm.code_addr_start = memory_management_struct.kernel_code_start;
initial_mm.code_addr_end = memory_management_struct.kernel_code_end;
initial_mm.data_addr_start = (ul)&_data;
initial_mm.data_addr_end = memory_management_struct.kernel_data_end;
initial_mm.rodata_addr_start = (ul)&_rodata;
initial_mm.rodata_addr_end = (ul)&_erodata;
initial_mm.brk_start = 0;
initial_mm.brk_end = memory_management_struct.kernel_end;
2022-04-13 09:58:06 +00:00
initial_mm.stack_start = _stack_start;
2022-04-14 08:53:11 +00:00
// 初始化进程和tss
2022-04-14 08:53:11 +00:00
// set_tss64((uint *)phys_2_virt(TSS64_Table), initial_thread.rbp, initial_tss[0].rsp1, initial_tss[0].rsp2, initial_tss[0].ist1, initial_tss[0].ist2, initial_tss[0].ist3, initial_tss[0].ist4, initial_tss[0].ist5, initial_tss[0].ist6, initial_tss[0].ist7);
2022-04-13 09:58:06 +00:00
initial_tss[proc_current_cpu_id].rsp0 = initial_thread.rbp;
/*
kdebug("initial_thread.rbp=%#018lx", initial_thread.rbp);
kdebug("initial_tss[0].rsp1=%#018lx", initial_tss[0].rsp1);
kdebug("initial_tss[0].ist1=%#018lx", initial_tss[0].ist1);
*/
// 初始化进程的循环链表
list_init(&initial_proc_union.pcb.list);
kernel_thread(initial_kernel_thread, 10, CLONE_FS | CLONE_FILES | CLONE_SIGNAL); // 初始化内核进程
initial_proc_union.pcb.state = PROC_RUNNING;
2022-04-13 03:14:49 +00:00
initial_proc_union.pcb.preempt_count = 0;
// 获取新的进程的pcb
2022-04-14 08:53:11 +00:00
// struct process_control_block *p = container_of(list_next(&current_pcb->list), struct process_control_block, list);
2022-04-14 08:53:11 +00:00
// kdebug("Ready to switch...");
// 切换到新的内核线程
// switch_proc(current_pcb, p);
}
/**
* @brief fork当前进程
*
* @param regs
* @param clone_flags
* @param stack_start
* @param stack_size
* @return unsigned long
*/
unsigned long do_fork(struct pt_regs *regs, unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size)
{
struct process_control_block *tsk = NULL;
2022-04-26 05:12:59 +00:00
// kdebug("222\tregs.rip = %#018lx", regs->rip);
// 获取一个物理页并在这个物理页内初始化pcb
struct Page *pp = alloc_pages(ZONE_NORMAL, 1, PAGE_PGT_MAPPED | PAGE_KERNEL);
tsk = (struct process_control_block *)phys_2_virt(pp->addr_phys);
memset(tsk, 0, sizeof(struct process_control_block));
// 将当前进程的pcb复制到新的pcb内
*tsk = *current_pcb;
2022-04-14 08:53:11 +00:00
// kdebug("current_pcb->flags=%#010lx", current_pcb->flags);
// 将进程加入循环链表
list_init(&tsk->list);
// list_add(&initial_proc_union.pcb.list, &tsk->list);
tsk->priority = 2;
2022-04-13 03:14:49 +00:00
tsk->preempt_count = 0;
++(tsk->pid);
2022-04-13 09:58:06 +00:00
tsk->cpu_id = proc_current_cpu_id;
tsk->state = PROC_UNINTERRUPTIBLE;
2022-04-12 03:54:44 +00:00
list_init(&tsk->list);
list_add(&initial_proc_union.pcb.list, &tsk->list);
// 将线程结构体放置在pcb的后面
struct thread_struct *thd = (struct thread_struct *)(tsk + 1);
memset(thd, 0, sizeof(struct thread_struct));
tsk->thread = thd;
2022-04-26 05:12:59 +00:00
// kdebug("333\tregs.rip = %#018lx", regs->rip);
// 将寄存器信息存储到进程的内核栈空间的顶部
memcpy((void *)((ul)tsk + STACK_SIZE - sizeof(struct pt_regs)), regs, sizeof(struct pt_regs));
2022-04-26 16:39:02 +00:00
// kdebug("regs.rip = %#018lx", regs->rip);
// 设置进程的内核栈
thd->rbp = (ul)tsk + STACK_SIZE;
thd->rip = regs->rip;
thd->rsp = (ul)tsk + STACK_SIZE - sizeof(struct pt_regs);
thd->fs = KERNEL_DS;
thd->gs = KERNEL_DS;
2022-04-14 08:53:11 +00:00
// kdebug("do_fork() thd->rsp=%#018lx", thd->rsp);
// 若进程不是内核层的进程则跳转到ret from system call
if (!(tsk->flags & PF_KTHREAD))
thd->rip = regs->rip = (ul)ret_from_system_call;
else
kdebug("is kernel proc.");
tsk->state = PROC_RUNNING;
sched_cfs_enqueue(tsk);
return 0;
}