math: Use acosh from CORE-MATH

The current implementation precision shows the following accuracy, on
two different ranges ([1,21) and [21, DBL_MAX)) with 10e9 uniform
randomly generated numbers (first column is the accuracy in ULP, with
'0' being correctly rounded, second is the number of samples with the
corresponding precision):

* range [1,21]

 * FE_TONEAREST
    0:       8931139411  89.31%
    1:       1068697545  10.69%
    2:           163044   0.00%
 * FE_UPWARD
    0:       7936620731  79.37%
    1:       2062594522  20.63%
    2:           783977   0.01%
    3:              770   0.00%
 * FE_DOWNWARD
    0:       7936459794  79.36%
    1:       2062734117  20.63%
    2:           805312   0.01%
    3:              777   0.00%
 * FE_TOWARDZERO
    0:       7910345595  79.10%
    1:       2088584522  20.89%
    2:          1069106   0.01%
    3:              777   0.00%

* Range [21, DBL_MAX)
 * FE_TONEAREST
    0:       5163888431  51.64%
    1:       4836111569  48.36%
 * FE_UPWARD
    0:       4835951885  48.36%
    1:       5164048115  51.64%
 * FE_DOWNWARD
    0:       5164048432  51.64%
    1:       4835951568  48.36%
 * FE_TOWARDZERO
    0:       5164058042  51.64%
    1:       4835941958  48.36%

The CORE-MATH implementation is correctly rounded for any rounding mode.
The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1) shows:

reciprocal-throughput        master       patched   improvement
x86_64                      20.9131       47.2187      -125.79%
x86_64v2                    20.8823       41.1042       -96.84%
x86_64v3                    19.0282       25.8045       -35.61%
aarch64                     14.7419       18.1535       -23.14%
power10                     8.98341       11.0423       -22.92%

Latency                      master       patched   improvement
x86_64                      75.5494       89.5979      -18.60%
x86_64v2                    74.4443       87.6292      -17.71%
x86_64v3                    71.8558       70.7086        1.60%
aarch64                     30.3361       29.2709        3.51%
power10                     20.9263       19.2482        8.02%

For x86_64/x86_64-v2, most performance hit came from the fma call
through the ifunc mechanism.

Checked on x86_64-linux-gnu, aarch64-linux-gnu, and
powerpc64le-linux-gnu.

Reviewed-by: DJ Delorie <dj@redhat.com>
This commit is contained in:
Adhemerval Zanella 2025-10-10 15:15:22 -03:00
parent 3d20d746c3
commit d1509f2ce3
4 changed files with 580 additions and 52 deletions

View File

@ -239,6 +239,8 @@ tzdata:
# The project is distribute here:
# https://gitlab.inria.fr/core-math/core-math/
core-math:
# src/binary64/acosh/acosh.c, revision 69062c4d
sysdeps/ieee754/dbl-64/e_acosh.c
# src/binary32/acos/acosf.c, revision 56dd347
sysdeps/ieee754/flt-32/e_acosf.c
# src/binary32/acosh/acoshf.c, revision d0b9ddd

View File

@ -1,3 +1,16 @@
# sysdeps/i386/fpu/e_acosh.S is not correctly rounded
Function: "acosh":
double: 1
Function: "acosh_downward":
double: 1
Function: "acosh_towardzero":
double: 1
Function: "acosh_upward":
double: 1
# sysdeps/i386/fpu/s_cbrtf.S is not correctly rounded
Function: "cbrt":
float: 1

View File

@ -1,67 +1,568 @@
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Correctly-rounded inverse hyperbolic cosine function for the
binary64 floating point format.
/* __ieee754_acosh(x)
* Method :
* Based on
* acosh(x) = log [ x + sqrt(x*x-1) ]
* we have
* acosh(x) := log(x)+ln2, if x is large; else
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
*
* Special cases:
* acosh(x) is NaN with signal if x<1.
* acosh(NaN) is NaN without signal.
*/
Copyright (c) 2023-2025 Alexei Sibidanov.
The original version of this file was copied from the CORE-MATH
project (file src/binary64/acosh/acosh.c, revision 69062c4d).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. */
/* References:
[1] Tight and rigourous error bounds for basic building blocks of
double-word arithmetic, by Mioara Joldeş, Jean-Michel Muller,
and Valentina Popescu, ACM Transactions on Mathematical Software,
44(2), 2017.
[2] Formalization of double-word arithmetic, and comments on Tight and
rigorous error bounds for basic building blocks of double-word
arithmetic, Jean-Michel Muller, Laurence Rideau,
https://hal.science/hal-02972245v2, 2021.
*/
#include <array_length.h>
#include <stdint.h>
#include <math.h>
#include <math_private.h>
#include <libm-alias-finite.h>
#include "math_config.h"
static const double
one = 1.0,
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
static inline double
fasttwosum (double x, double y, double *e)
{
double s = x + y, z = s - x;
*e = y - z;
return s;
}
static inline double
adddd (double xh, double xl, double ch, double cl, double *l)
{
double s = xh + ch, d = s - xh;
*l = ((ch - d) + (xh + (d - s))) + (xl + cl);
return s;
}
/* This function implements Algorithm 10 (DWTimesDW1) from [1]
Its relative error (for round-to-nearest ties-to-even) is bounded by 5u^2
(Theorem 2.6 of [2]), where u = 2^-53 for double precision,
assuming xh = RN(xh + xl), which implies |xl| <= 1/2 ulp(xh),
and similarly for ch, cl. */
static inline double
muldd (double xh, double xl, double ch, double cl, double *l)
{
double ahlh = ch * xl, alhh = cl * xh, ahhh = ch * xh,
ahhl = fma (ch, xh, -ahhh);
ahhl += alhh + ahlh;
ch = ahhh + ahhl;
*l = (ahhh - ch) + ahhl;
return ch;
}
static inline double
mulddd (double xh, double xl, double ch, double *l)
{
double ahlh = ch * xl, ahhh = ch * xh, ahhl = fma (ch, xh, -ahhh);
ahhl += ahlh;
ch = ahhh + ahhl;
*l = (ahhh - ch) + ahhl;
return ch;
}
static inline double
polydd (double xh, double xl, int n, const double c[][2], double *l)
{
int i = n - 1;
double ch = c[i][0] + *l, cl = ((c[i][0] - ch) + *l) + c[i][1];
while (--i >= 0)
{
ch = muldd (xh, xl, ch, cl, &cl);
double th = ch + c[i][0], tl = (c[i][0] - th) + ch;
ch = th;
cl += tl + c[i][1];
}
*l = cl;
return ch;
}
static double __attribute__ ((noinline)) as_acosh_refine (double, double);
static double __attribute__ ((noinline))
as_acosh_one (double x, double sh, double sl)
{
static const double ch[][2]
= { { -0x1.5555555555555p-4, -0x1.5555555554af1p-58 },
{ 0x1.3333333333333p-6, 0x1.9999998933f0ep-61 },
{ -0x1.6db6db6db6db7p-8, 0x1.24929b16ec6b7p-63 },
{ 0x1.f1c71c71c71c7p-10, 0x1.c56d45e265e2cp-66 },
{ -0x1.6e8ba2e8ba2e9p-11, 0x1.6d50ce7188d3dp-65 },
{ 0x1.1c4ec4ec4ec43p-12, 0x1.c6791d1cf399ap-66 },
{ -0x1.c99999999914fp-14, 0x1.ee0d9408a2e2ap-68 },
{ 0x1.7a878787648e2p-15, -0x1.1cea281e08012p-69 },
{ -0x1.3fde50d0cb4b9p-16, 0x1.0335101403d9dp-72 },
{ 0x1.12ef3bf8a0a74p-17, 0x1.f9c6b51787043p-80 } };
static const double cl[]
= { -0x1.df3b9d1296ea9p-19, 0x1.a681d7d2298ebp-20,
-0x1.77ead7b1ca449p-21, 0x1.4edd2ddb3721fp-22,
-0x1.1bf173531ee23p-23, 0x1.613229230e255p-25 };
double y2
= x
* (cl[0]
+ x
* (cl[1]
+ x * (cl[2] + x * (cl[3] + x * (cl[4] + x * (cl[5]))))));
double y1 = polydd (x, 0, 10, ch, &y2);
y1 = mulddd (y1, y2, x, &y2);
double y0 = fasttwosum (1, y1, &y1);
y1 += y2;
y0 = muldd (y0, y1, sh, sl, &y1);
return y0 + y1;
}
static const struct
{
uint64_t c0;
short c1;
} B[] = {
{ 301, 27565 }, { 7189, 24786 }, { 13383, 22167 }, { 18923, 19696 },
{ 23845, 17361 }, { 28184, 15150 }, { 31969, 13054 }, { 35231, 11064 },
{ 37996, 9173 }, { 40288, 7372 }, { 42129, 5657 }, { 43542, 4020 },
{ 44546, 2457 }, { 45160, 962 }, { 45399, -468 }, { 45281, -1838 },
{ 44821, -3151 }, { 44032, -4412 }, { 42929, -5622 }, { 41522, -6786 },
{ 39825, -7905 }, { 37848, -8982 }, { 35602, -10020 }, { 33097, -11020 },
{ 30341, -11985 }, { 27345, -12916 }, { 24115, -13816 }, { 20661, -14685 },
{ 16989, -15526 }, { 13107, -16339 }, { 9022, -17126 }, { 4740, -17889 }
};
static const double r1[]
= { 0x1p+0, 0x1.f5076p-1, 0x1.ea4bp-1, 0x1.dfc98p-1, 0x1.d5818p-1,
0x1.cb72p-1, 0x1.c199cp-1, 0x1.b7f76p-1, 0x1.ae8ap-1, 0x1.a5504p-1,
0x1.9c492p-1, 0x1.93738p-1, 0x1.8ace6p-1, 0x1.8258ap-1, 0x1.7a114p-1,
0x1.71f76p-1, 0x1.6a09ep-1, 0x1.6247ep-1, 0x1.5ab08p-1, 0x1.5342cp-1,
0x1.4bfdap-1, 0x1.44e08p-1, 0x1.3dea6p-1, 0x1.371a8p-1, 0x1.306fep-1,
0x1.29e9ep-1, 0x1.2387ap-1, 0x1.1d488p-1, 0x1.172b8p-1, 0x1.11302p-1,
0x1.0b558p-1, 0x1.059bp-1, 0x1p-1 };
static const double r2[]
= { 0x1p+0, 0x1.ffa74p-1, 0x1.ff4eap-1, 0x1.fef62p-1, 0x1.fe9dap-1,
0x1.fe452p-1, 0x1.fdeccp-1, 0x1.fd946p-1, 0x1.fd3c2p-1, 0x1.fce3ep-1,
0x1.fc8bcp-1, 0x1.fc33ap-1, 0x1.fbdbap-1, 0x1.fb83ap-1, 0x1.fb2bcp-1,
0x1.fad3ep-1, 0x1.fa7c2p-1, 0x1.fa246p-1, 0x1.f9ccap-1, 0x1.f975p-1,
0x1.f91d8p-1, 0x1.f8c6p-1, 0x1.f86e8p-1, 0x1.f8172p-1, 0x1.f7bfep-1,
0x1.f768ap-1, 0x1.f7116p-1, 0x1.f6ba4p-1, 0x1.f6632p-1, 0x1.f60c2p-1,
0x1.f5b52p-1, 0x1.f55e4p-1, 0x1.f5076p-1 };
static const double l1[][2] = { { 0x0p+0, 0x0p+0 },
{ -0x1.269e2038315b3p-46, 0x1.62e4eacd4p-6 },
{ -0x1.3f2558bddfc47p-45, 0x1.62e3ce7218p-5 },
{ 0x1.07ea13c34efb5p-45, 0x1.0a2ab6d3ecp-4 },
{ 0x1.8f3e77084d3bap-44, 0x1.62e4a86d8cp-4 },
{ -0x1.8d92a005f1a7ep-46, 0x1.bb9db7062cp-4 },
{ 0x1.58239e799bfe5p-44, 0x1.0a2b1a22ccp-3 },
{ -0x1.a93fcf5f593b7p-44, 0x1.3687f0a298p-3 },
{ -0x1.db4cac32fd2b5p-46, 0x1.62e4116b64p-3 },
{ -0x1.0e65a92ee0f3bp-46, 0x1.8f409e4df6p-3 },
{ -0x1.8261383d475f1p-44, 0x1.bb9d15001cp-3 },
{ -0x1.359886207513bp-44, 0x1.e7f9a8c94p-3 },
{ 0x1.811f87496ceb7p-44, 0x1.0a2b052ddbp-2 },
{ 0x1.4991ec6cb435cp-44, 0x1.205955ef73p-2 },
{ -0x1.4581abfeb8927p-44, 0x1.3687bd9121p-2 },
{ 0x1.cab48f6942703p-44, 0x1.4cb5e8f2b5p-2 },
{ -0x1.df2c452fde132p-47, 0x1.62e4420e2p-2 },
{ 0x1.6109f4fdb74bdp-45, 0x1.791292c46ap-2 },
{ -0x1.6b95fbdac7696p-44, 0x1.8f40af84e7p-2 },
{ 0x1.7394fa880cbdap-46, 0x1.a56ed8f865p-2 },
{ -0x1.50b06a94eccabp-46, 0x1.bb9d6505b4p-2 },
{ -0x1.be2abf0b38989p-44, 0x1.d1cb91e728p-2 },
{ -0x1.7d6bf1e34da04p-44, 0x1.e7f9d139e2p-2 },
{ -0x1.423c1e14de6edp-44, 0x1.fe27db9b0ep-2 },
{ 0x1.c46f1a0efbbc2p-44, 0x1.0a2b25060a8p-1 },
{ 0x1.834fe4e3e6018p-45, 0x1.154244482ap-1 },
{ 0x1.6a03d0f02b65p-46, 0x1.20597312988p-1 },
{ 0x1.d437056526f3p-44, 0x1.2b707145dep-1 },
{ -0x1.a0233728405c5p-45, 0x1.3687b0e0b28p-1 },
{ -0x1.4dbdda10d2bf1p-45, 0x1.419ec5d3f68p-1 },
{ 0x1.f7d0a25d154f2p-44, 0x1.4cb5f9fc02p-1 },
{ 0x1.15ede4d803b18p-44, 0x1.57cd28421a8p-1 },
{ 0x1.ef35793c7673p-45, 0x1.62e42fefa38p-1 } };
static const double l2[][2] = { { 0x0p+0, 0x0p+0 },
{ 0x1.5abdac3638e99p-44, 0x1.631ec81ep-11 },
{ -0x1.16b8be9bbe239p-45, 0x1.62fd8127p-10 },
{ -0x1.364c6315542ebp-44, 0x1.0a2520508p-9 },
{ 0x1.734abe459c9p-45, 0x1.62dadc1dp-9 },
{ 0x1.0cf8a761431bfp-44, 0x1.bb9ff94dp-9 },
{ 0x1.da2718eb78708p-45, 0x1.0a2a2def8p-8 },
{ 0x1.34ada62c59b93p-44, 0x1.368c0fae4p-8 },
{ 0x1.d09ab376682d4p-44, 0x1.62e58e4f8p-8 },
{ -0x1.3cb7b94329211p-45, 0x1.8f46bd28cp-8 },
{ -0x1.eec5c297c41dp-45, 0x1.bb9f8312p-8 },
{ -0x1.6411b9395d15p-44, 0x1.e7fff8f3p-8 },
{ -0x1.1c0e59a43053cp-44, 0x1.0a2c0006ep-7 },
{ 0x1.6506596e077b6p-46, 0x1.205bdb6fp-7 },
{ 0x1.e256bce6faa27p-44, 0x1.36877c86ep-7 },
{ 0x1.bd42467b0c8d1p-51, 0x1.4cb6f5578p-7 },
{ -0x1.c4f92132ff0fp-44, 0x1.62e230e8cp-7 },
{ -0x1.80be08bfab39p-44, 0x1.7911440f6p-7 },
{ -0x1.f0b1319ceb1f7p-44, 0x1.8f443020ap-7 },
{ 0x1.a65fcfb8de99bp-45, 0x1.a572dbef4p-7 },
{ 0x1.4233885d3779cp-46, 0x1.bb9d449a6p-7 },
{ 0x1.f46a59e646edbp-44, 0x1.d1cb8491cp-7 },
{ -0x1.c3d2f11c11446p-44, 0x1.e7fd9d2aap-7 },
{ 0x1.7763f78a1e0ccp-45, 0x1.fe2b6f978p-7 },
{ 0x1.b4c37fc60c043p-44, 0x1.0a2a7c7a5p-6 },
{ -0x1.5b8a822859be3p-46, 0x1.15412ca86p-6 },
{ -0x1.f2d8c9fc064p-44, 0x1.2059c9005p-6 },
{ -0x1.e80e79c20378dp-44, 0x1.2b703f49bp-6 },
{ 0x1.68256e4329bdbp-44, 0x1.3688a1a8dp-6 },
{ 0x1.7e9741da248c3p-44, 0x1.419edc7bap-6 },
{ 0x1.e330dccce602bp-45, 0x1.4cb7034fap-6 },
{ 0x1.2f32b5d18eefbp-49, 0x1.57cd01187p-6 },
{ -0x1.269e2038315b3p-46, 0x1.62e4eacd4p-6 } };
static const double c[] = { -0x1p-1, 0x1.555555555553p-2, -0x1.fffffffffffap-3,
0x1.99999e33a6366p-3, -0x1.555559ef9525fp-3 };
double
__ieee754_acosh (double x)
{
int64_t hx;
EXTRACT_WORDS64 (hx, x);
if (hx > INT64_C (0x4000000000000000))
uint64_t ix = asuint64 (x);
if (__glibc_unlikely (ix >= UINT64_C (0x7ff0000000000000)))
{
if (__glibc_unlikely (hx >= INT64_C (0x41b0000000000000)))
{
/* x > 2**28 */
if (hx >= INT64_C (0x7ff0000000000000))
/* x is inf of NaN */
return x + x;
else
return __ieee754_log (x) + ln2;/* acosh(huge)=log(2x) */
}
uint64_t aix = ix << 1;
if (ix == UINT64_C (0x7ff0000000000000)
|| aix > (UINT64_C (0x7ff) << 53))
return x + x; /* +inf or nan */
return __math_invalid (x);
}
/* 2**28 > x > 2 */
double t = x * x;
return __ieee754_log (2.0 * x - one / (x + sqrt (t - one)));
}
else if (__glibc_likely (hx > INT64_C (0x3ff0000000000000)))
if (__glibc_unlikely (ix <= UINT64_C (0x3ff0000000000000)))
{
/* 1<x<2 */
double t = x - one;
return __log1p (t + sqrt (2.0 * t + t * t));
if (ix == UINT64_C (0x3ff0000000000000))
return 0;
return __math_invalid (x);
}
else if (__glibc_likely (hx == INT64_C (0x3ff0000000000000)))
return 0.0; /* acosh(1) = 0 */
else /* x < 1 */
return (x - x) / (x - x);
double g;
int off = 0x3fe;
uint64_t t = ix;
if (ix < UINT64_C (0x3ff1e83e425aee63))
{
double z = x - 1;
double iz = (-0.25) / z, zt = 2 * z;
double sh = sqrt (zt),
sl = fma (sh, sh, -zt) * (sh * iz);
static const double cl[] = {
-0x1.5555555555555p-4, 0x1.3333333332f95p-6, -0x1.6db6db6d5534cp-8,
0x1.f1c71c1e04356p-10, -0x1.6e8b8e3e40d58p-11, 0x1.1c4ba825ac4fep-12,
-0x1.c9045534e6d9ep-14, 0x1.71fedae26a76bp-15, -0x1.f1f4f8cc65342p-17
};
double z2 = z * z, z4 = z2 * z2,
ds = (sh * z)
* (cl[0]
+ z
* (((cl[1] + z * cl[2]) + z2 * (cl[3] + z * cl[4]))
+ z4
* ((cl[5] + z * cl[6])
+ z2 * (cl[7] + z * cl[8]))));
double eps = ds * 0x1.04p-50 - 0x1p-104 * sh;
ds += sl;
double lb = sh + (ds - eps), ub = sh + (ds + eps);
if (lb == ub)
return lb;
return as_acosh_one (z, sh, sl);
}
else if (__glibc_likely (ix < UINT64_C (0x405bf00000000000)))
{
off = 0x3ff;
double x2h = x * x, wh = x2h - 1, wl = fma (x, x, -x2h);
double sh = sqrt (wh), ish = 0.5 / wh,
sl = (wl - fma (sh, sh, -wh)) * (sh * ish);
double tl, th = fasttwosum (x, sh, &tl);
tl += sl;
t = asuint64 (th);
g = tl / th;
}
else if (ix < UINT64_C (0x4087100000000000))
{
static const double cl[]
= { 0x1.5c4b6148816e2p-66, -0x1.000000000005cp-2,
-0x1.7fffffebf3e6cp-4, -0x1.aab6691f2bae7p-5 };
double z = 1 / (x * x);
g = cl[0] + z * (cl[1] + z * (cl[2] + z * cl[3]));
}
else if (ix < UINT64_C (0x40e0100000000000))
{
static const double cl[]
= { -0x1.7f77c8429c6c6p-67, -0x1.ffffffffff214p-3,
-0x1.8000268641bfep-4 };
double z = 1 / (x * x);
g = cl[0] + z * (cl[1] + z * cl[2]);
}
else if (ix < UINT64_C (0x41ea000000000000))
{
static const double cl[]
= { 0x1.7a0ed2effdd1p-67, -0x1.000000017d048p-2 };
double z = 1 / (x * x);
g = cl[0] + z * cl[1];
}
else
{
g = 0;
}
int ex = t >> 52, e = ex - off;
t &= ~UINT64_C (0) >> 12;
double ed = e;
uint64_t i = t >> (52 - 5);
int64_t d = t & (~UINT64_C (0) >> 17);
uint64_t j
= (t + ((uint64_t) B[i].c0 << 33) + ((int64_t) B[i].c1 * (d >> 16)))
>> (52 - 10);
t |= UINT64_C (0x3ff) << 52;
int i1 = j >> 5, i2 = j & 0x1f;
double r = r1[i1] * r2[i2], dx = fma (r, asdouble(t), -1), dx2 = dx * dx;
double f
= dx2 * ((c[0] + dx * c[1]) + dx2 * ((c[2] + dx * c[3]) + dx2 * c[4]));
const double l2h = 0x1.62e42fefa38p-1, l2l = 0x1.ef35793c7673p-45;
double lh = (l1[i1][1] + l2[i2][1]) + l2h * ed, ll = dx + l2l * ed;
ll += g;
ll += l1[i1][0] + l2[i2][0];
ll += f;
double eps = 2.8e-19;
double lb = lh + (ll - eps), ub = lh + (ll + eps);
if (__glibc_likely (lb == ub))
return lb;
return as_acosh_refine (x, 0x1.71547652b82fep+0 * lb);
}
libm_alias_finite (__ieee754_acosh, __acosh)
static __attribute__ ((noinline)) double
as_acosh_database (double x, double f)
{
static const double db[][3] = {
{ 0x1.5bff041b260fep+0, 0x1.a6031cd5f93bap-1, 0x1p-55 },
{ 0x1.9efdca62b700ap+0, 0x1.104b648f113a1p+0, 0x1p-54 },
{ 0x1.9efdca62b700ap+0, 0x1.104b648f113a1p+0, 0x1p-54 },
{ 0x1.a5bf3acfde4b2p+0, 0x1.1585720f35cd9p+0, -0x1p-54 },
{ 0x1.d888dd2101d93p+1, 0x1.faf8b7a12cf9fp+0, -0x1p-54 },
{ 0x1.0151def34c2b8p+5, 0x1.0a7b6e3fed72p+2, 0x1p-52 },
{ 0x1.45ea160ddc71fp+7, 0x1.725811dcf6782p+2, 0x1p-52 },
{ 0x1.13570067acc9fp+9, 0x1.c04672343dccfp+2, -0x1p-52 },
{ 0x1.2a686e4b567cep+10, 0x1.f1c928e7f1e65p+2, 0x1p-52 },
{ 0x1.cb62eec26bd78p+15, 0x1.759a2ad4c4d56p+3, 0x1p-51 },
};
int a = 0, b = array_length (db) - 1, m = (a + b) / 2;
while (a <= b)
{ /* binary search */
if (db[m][0] < x)
a = m + 1;
else if (db[m][0] == x)
{
f = db[m][1] + db[m][2];
break;
}
else
b = m - 1;
m = (a + b) / 2;
}
return f;
}
static double
as_acosh_refine (double x, double a)
{
static const double t1[]
= { 0x1p+0, 0x1.ea4afap-1, 0x1.d5818ep-1, 0x1.c199bep-1,
0x1.ae89f98p-1, 0x1.9c4918p-1, 0x1.8ace54p-1, 0x1.7a1147p-1,
0x1.6a09e68p-1, 0x1.5ab07ep-1, 0x1.4bfdad8p-1, 0x1.3dea65p-1,
0x1.306fe08p-1, 0x1.2387a7p-1, 0x1.172b84p-1, 0x1.0b5587p-1,
0x1p-1 };
static const double t2[]
= { 0x1p+0, 0x1.fe9d968p-1, 0x1.fd3c228p-1, 0x1.fbdba38p-1,
0x1.fa7c18p-1, 0x1.f91d8p-1, 0x1.f7bfdbp-1, 0x1.f663278p-1,
0x1.f507658p-1, 0x1.f3ac948p-1, 0x1.f252b38p-1, 0x1.f0f9c2p-1,
0x1.efa1bfp-1, 0x1.ee4aaap-1, 0x1.ecf483p-1, 0x1.eb9f488p-1 };
static const double t3[]
= { 0x1p+0, 0x1.ffe9d2p-1, 0x1.ffd3a58p-1, 0x1.ffbd798p-1,
0x1.ffa74e8p-1, 0x1.ff91248p-1, 0x1.ff7afb8p-1, 0x1.ff64d38p-1,
0x1.ff4eac8p-1, 0x1.ff38868p-1, 0x1.ff22618p-1, 0x1.ff0c3dp-1,
0x1.fef61ap-1, 0x1.fedff78p-1, 0x1.fec9d68p-1, 0x1.feb3b6p-1 };
static const double t4[]
= { 0x1p+0, 0x1.fffe9dp-1, 0x1.fffd3ap-1, 0x1.fffbd78p-1,
0x1.fffa748p-1, 0x1.fff9118p-1, 0x1.fff7ae8p-1, 0x1.fff64cp-1,
0x1.fff4e9p-1, 0x1.fff386p-1, 0x1.fff2238p-1, 0x1.fff0c08p-1,
0x1.ffef5d8p-1, 0x1.ffedfa8p-1, 0x1.ffec98p-1, 0x1.ffeb35p-1 };
static const double LL[4][17][3] = {
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e432b24p-6, -0x1.745af34bb54b8p-42, -0x1.17e3ec05cde7p-97 },
{ 0x1.62e42e4a8p-5, 0x1.111a4eadf312p-44, 0x1.cff3027abb119p-93 },
{ 0x1.0a2b233f1p-4, -0x1.88ac4ec78af8p-42, 0x1.4fa087ca75dfdp-93 },
{ 0x1.62e43056cp-4, 0x1.6bd65e8b0b7p-46, -0x1.b18e160362c24p-95 },
{ 0x1.bb9d3cbd6p-4, 0x1.de14aa55ec2bp-42, -0x1.c6ac3f1862a6bp-94 },
{ 0x1.0a2b244dap-3, 0x1.94def487fea7p-42, -0x1.dead1a4581acfp-94 },
{ 0x1.3687aa9b78p-3, 0x1.9cec9a50db22p-43, 0x1.34a70684f8e0ep-93 },
{ 0x1.62e42fabap-3, -0x1.d69047a3aebp-44, -0x1.4e061f79144e2p-95 },
{ 0x1.8f40b56d28p-3, 0x1.de7d755fd2e2p-42, 0x1.bdc7ecf001489p-94 },
{ 0x1.bb9d3b61fp-3, 0x1.c14f1445b12p-46, 0x1.a1d78cbdc5b58p-93 },
{ 0x1.e7f9c11f08p-3, -0x1.6e3e0000dae7p-43, 0x1.6a4559fadde98p-94 },
{ 0x1.0a2b242ec4p-2, 0x1.bb7cf852a5fe8p-42, 0x1.a6aef11ee43bdp-93 },
{ 0x1.205966c764p-2, 0x1.ad3a5f214294p-45, 0x1.5cc344fa10652p-93 },
{ 0x1.3687a98aacp-2, 0x1.1623671842fp-45, -0x1.0b428fe1f9e43p-94 },
{ 0x1.4cb5ec93f4p-2, 0x1.3d50980ea513p-42, 0x1.67f0ea083b1c4p-93 },
{ 0x1.62e42fefa4p-2, -0x1.8432a1b0e264p-44, 0x1.803f2f6af40f3p-93 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e462b4p-10, 0x1.061d003b97318p-42, 0x1.d7faee66a2e1ep-93 },
{ 0x1.62e44c92p-9, 0x1.95a7bff5e239p-42, -0x1.f7e788a87135p-95 },
{ 0x1.0a2b1e33p-8, 0x1.2a3a1a65aa3ap-43, -0x1.54599c9605442p-93 },
{ 0x1.62e4367cp-8, -0x1.4a995b6d9ddcp-45, -0x1.56bb79b254f33p-100 },
{ 0x1.bb9d449ap-8, 0x1.8a119c42e9bcp-42, -0x1.8ecf7d8d661f1p-93 },
{ 0x1.0a2b1f19p-7, 0x1.8863771bd10a8p-42, 0x1.e9731de7f0155p-94 },
{ 0x1.3687ad11p-7, 0x1.e026a347ca1c8p-42, 0x1.fadc62522444dp-97 },
{ 0x1.62e436f28p-7, 0x1.25b84f71b70b8p-42, -0x1.fcb3f98612d27p-96 },
{ 0x1.8f40b7b38p-7, -0x1.62a0a4fd4758p-43, 0x1.3cb3c35d9f6a1p-93 },
{ 0x1.bb9d3abbp-7, -0x1.0ec48f94d786p-42, -0x1.6b47d410e4cc7p-93 },
{ 0x1.e7f9bb23p-7, 0x1.e4415cbc97ap-43, -0x1.3729fdb677231p-93 },
{ 0x1.0a2b22478p-6, -0x1.cb73f4505b03p-42, -0x1.1b3b3a3bc370ap-93 },
{ 0x1.2059691e8p-6, -0x1.abcc3412f264p-43, -0x1.fe6e998e48673p-95 },
{ 0x1.3687a768p-6, -0x1.43901e5c97a9p-42, 0x1.b54cdd52a5d88p-96 },
{ 0x1.4cb5eb5d8p-6, -0x1.8f106f00f13b8p-42, -0x1.8f793f5fce148p-93 },
{ 0x1.62e432b24p-6, -0x1.745af34bb54b8p-42, -0x1.17e3ec05cde7p-97 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e7bp-14, -0x1.868625640a68p-44, -0x1.34bf0db910f65p-93 },
{ 0x1.62e35f6p-13, -0x1.2ee3d96b696ap-43, 0x1.a2948cd558655p-94 },
{ 0x1.0a2b4b2p-12, 0x1.53edbcf1165p-47, -0x1.cfc26ccf6d0e4p-97 },
{ 0x1.62e4be1p-12, 0x1.783e334614p-52, -0x1.04b96da30e63ap-93 },
{ 0x1.bb9e085p-12, -0x1.60785f20acb2p-43, -0x1.f33369bf7dff1p-96 },
{ 0x1.0a2b94dp-11, 0x1.fd4b3a273353p-42, -0x1.685a35575eff1p-96 },
{ 0x1.368810f8p-11, 0x1.7ded26dc813p-47, -0x1.4c4d1abca79bfp-96 },
{ 0x1.62e47878p-11, 0x1.7d2bee9a1f63p-42, 0x1.860233b7ad13p-93 },
{ 0x1.8f40cb48p-11, -0x1.af034eaf471cp-42, 0x1.ae748822d57b7p-94 },
{ 0x1.bb9d094p-11, -0x1.7a223013a20fp-42, -0x1.1e499087075b6p-93 },
{ 0x1.e7fa32c8p-11, -0x1.b2e67b1b59bdp-43, -0x1.54a41eda30fa6p-93 },
{ 0x1.0a2b237p-10, -0x1.7ad97ff4ac7ap-44, 0x1.f932da91371ddp-93 },
{ 0x1.2059a338p-10, -0x1.96422d90df4p-44, -0x1.90800fbbf2ed3p-94 },
{ 0x1.36879824p-10, 0x1.0f9054001812p-44, 0x1.9567e01e48f9ap-93 },
{ 0x1.4cb602cp-10, -0x1.0d709a5ec0b5p-43, 0x1.253dfd44635d2p-94 },
{ 0x1.62e462b4p-10, 0x1.061d003b97318p-42, 0x1.d7faee66a2e1ep-93 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.63007cp-18, -0x1.db0e38e5aaaap-43, 0x1.259a7b94815b9p-93 },
{ 0x1.6300f6p-17, 0x1.2b1c75580438p-44, 0x1.78cabba01e3e4p-93 },
{ 0x1.0a2115p-16, -0x1.5ff223730759p-42, 0x1.8074feacfe49dp-95 },
{ 0x1.62e1ecp-16, -0x1.85d6f6487ce4p-45, 0x1.05485074b9276p-93 },
{ 0x1.bba301p-16, -0x1.af5d58a7c921p-43, -0x1.30a8c0fd2ff5fp-93 },
{ 0x1.0a32298p-15, 0x1.590faa0883bdp-43, 0x1.95e9bda999947p-93 },
{ 0x1.3682f1p-15, 0x1.f0224376efaf8p-42, -0x1.5843c0db50d1p-93 },
{ 0x1.62e3d8p-15, -0x1.142c13daed4ap-43, 0x1.c68a61183ce87p-93 },
{ 0x1.8f44dd8p-15, -0x1.aa489f399931p-43, 0x1.11c5c376854eap-94 },
{ 0x1.bb9601p-15, 0x1.9904d8b6a3638p-42, 0x1.8c89554493c8fp-93 },
{ 0x1.e7f744p-15, 0x1.5785ddbe7cba8p-42, 0x1.e7ff3cde7d70cp-94 },
{ 0x1.0a2c53p-14, -0x1.6d9e8780d0d5p-43, 0x1.ad9c178106693p-94 },
{ 0x1.205d134p-14, -0x1.214a2e893fccp-43, 0x1.548a9500c9822p-93 },
{ 0x1.3685e28p-14, 0x1.e23588646103p-43, 0x1.2a97b26da2d88p-94 },
{ 0x1.4cb6c18p-14, 0x1.2b7cfcea9e0d8p-42, -0x1.5095048a6b824p-93 },
{ 0x1.62e7bp-14, -0x1.868625640a68p-44, -0x1.34bf0db910f65p-93 },
},
};
static const double ch[][2] = {
{ 0x1p-1, 0x1.24b67ee516e3bp-111 },
{ -0x1p-2, -0x1.932ce43199a8dp-110 },
{ 0x1.5555555555555p-3, 0x1.55540c15cf91fp-57 },
};
static const double cl[3]
= { -0x1p-3, 0x1.9999999a0754fp-4, -0x1.55555555c3157p-4 };
uint64_t ix = asuint64 (x);
double zh, zl;
if (ix < UINT64_C (0x4190000000000000))
{
double x2h = x * x, x2l = fma (x, x, -x2h);
double wl, wh = x2h - 1;
wh = fasttwosum (wh, x2l, &wl);
double sh = sqrt (wh), ish = 0.5 / wh,
sl = (ish * sh) * (wl - fma (sh, sh, -wh));
zh = fasttwosum (x, sh, &zl);
zl += sl;
zh = fasttwosum (zh, zl, &zl);
}
else if (ix < UINT64_C (0x4330000000000000))
{
zh = 2 * x;
zl = -0.5 / x;
}
else
{
zh = x;
zl = 0;
}
uint64_t t = asuint64 (zh);
int ex = t >> 52, e = ex - 0x3ff + (zl == 0.0);
t &= ~UINT64_C (0) >> 12;
t |= UINT64_C (0x3ff) << 52;
double ed = e;
uint64_t v = asuint64 (a - ed + 0x1.00008p+0);
uint64_t i = (v - (UINT64_C (0x3ff) << 52)) >> (52 - 16);
int i1 = (i >> 12) & 0x1f, i2 = (i >> 8) & 0xf, i3 = (i >> 4) & 0xf,
i4 = i & 0xf;
const double l20 = 0x1.62e42fefa38p-2, l21 = 0x1.ef35793c768p-46,
l22 = -0x1.9ff0342542fc3p-91;
double el2 = l22 * ed, el1 = l21 * ed, el0 = l20 * ed;
double L[3];
L[0] = LL[0][i1][0] + LL[1][i2][0] + (LL[2][i3][0] + LL[3][i4][0]);
L[1] = LL[0][i1][1] + LL[1][i2][1] + (LL[2][i3][1] + LL[3][i4][1]);
L[2] = LL[0][i1][2] + LL[1][i2][2] + (LL[2][i3][2] + LL[3][i4][2]);
L[0] += el0;
double t12 = t1[i1] * t2[i2], t34 = t3[i3] * t4[i4];
double th = t12 * t34, tl = fma (t12, t34, -th);
double tf = asdouble (t);
double dh = th * tf, dl = fma (th, tf, -dh);
double sh = tl * tf, sl = fma (tl, tf, -sh);
double xl, xh = fasttwosum (dh - 1, dl, &xl);
if (zl != 0.0)
{
t = asuint64 (zl);
t -= (int64_t) e << 52;
xl += th * asdouble (t);
}
xh = adddd (xh, xl, sh, sl, &xl);
sl = xh * (cl[0] + xh * (cl[1] + xh * cl[2]));
sh = polydd (xh, xl, 3, ch, &sl);
sh = muldd (xh, xl, sh, sl, &sl);
sh = adddd (sh, sl, el1, el2, &sl);
sh = adddd (sh, sl, L[1], L[2], &sl);
double v2, v0 = fasttwosum (L[0], sh, &v2), v1 = fasttwosum (v2, sl, &v2);
v0 *= 2;
v1 *= 2;
v2 *= 2;
t = asuint64 (v1);
if (__glibc_unlikely (!(t & (~UINT64_C (0) >> 12))))
{
uint64_t w = asuint64 (v2);
if ((w ^ t) >> 63)
t--;
else
t++;
v1 = asdouble (t);
}
uint64_t t0 = asuint64 (v0);
uint64_t er = ((t + 7) & (~UINT64_C (0) >> 12)),
de = ((t0 >> 52) & 0x7ff) - ((t >> 52) & 0x7ff);
double res = v0 + v1;
if (__glibc_unlikely (de > 102 || er < 15))
return as_acosh_database (x, res);
return res;
}

View File

@ -0,0 +1,12 @@
# Maximal error of functions:
Function: "acosh":
double: 0
Function: "acosh_downward":
double: 0
Function: "acosh_towardzero":
double: 0
Function: "acosh_upward":
double: 0