mirror of git://sourceware.org/git/glibc.git
139 lines
4.9 KiB
C
139 lines
4.9 KiB
C
/* Single-Precision vector (Advanced SIMD) inverse tan2pi function
|
|
|
|
Copyright (C) 2025 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
|
|
static const struct data
|
|
{
|
|
float32x4_t c1, c3, c5, c7;
|
|
float c2, c4, c6, c8;
|
|
float32x4_t c0;
|
|
uint32x4_t comp_const;
|
|
} data = {
|
|
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
|
[2^-128, 1.0].
|
|
Generated using fpminimax between FLT_MIN and 1. */
|
|
.c0 = V4 (0x1.45f306p-2), .c1 = V4 (-0x1.b2975ep-4),
|
|
.c2 = 0x1.0490e4p-4, .c3 = V4 (-0x1.70c272p-5),
|
|
.c4 = 0x1.0eef52p-5, .c5 = V4 (-0x1.6abbbap-6),
|
|
.c6 = 0x1.78157p-7, .c7 = V4 (-0x1.f0b406p-9),
|
|
.c8 = 0x1.2ae7fep-11, .comp_const = V4 (2 * 0x7f800000lu - 1),
|
|
};
|
|
|
|
#define SignMask v_u32 (0x80000000)
|
|
#define OneOverPi v_f32 (0x1.45f307p-2)
|
|
|
|
/* Special cases i.e. 0, infinity and nan (fall back to scalar calls). */
|
|
static float32x4_t VPCS_ATTR NOINLINE
|
|
special_case (float32x4_t y, float32x4_t x, float32x4_t ret,
|
|
uint32x4_t sign_xy, uint32x4_t cmp)
|
|
{
|
|
/* Account for the sign of y. */
|
|
ret = vreinterpretq_f32_u32 (
|
|
veorq_u32 (vreinterpretq_u32_f32 (ret), sign_xy));
|
|
|
|
/* Since we have no scalar fallback for atan2pif,
|
|
we can instead make a call to atan2f and divide by pi. */
|
|
ret = v_call2_f32 (atan2f, y, x, ret, cmp);
|
|
|
|
/* Only divide the special cases by pi, and leave the rest unchanged. */
|
|
return vbslq_f32 (cmp, vmulq_f32 (ret, OneOverPi), ret);
|
|
}
|
|
|
|
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
|
|
static inline uint32x4_t
|
|
zeroinfnan (uint32x4_t i, const struct data *d)
|
|
{
|
|
/* 2 * i - 1 >= 2 * 0x7f800000lu - 1. */
|
|
return vcgeq_u32 (vsubq_u32 (vshlq_n_u32 (i, 1), v_u32 (1)), d->comp_const);
|
|
}
|
|
|
|
/* Fast implementation of vector atan2f. Maximum observed error is 2.89 ULP:
|
|
_ZGVnN4vv_atan2pif (0x1.bd397p+54, 0x1.e79a4ap+54) got 0x1.e2678ep-3
|
|
want 0x1.e26794p-3. */
|
|
float32x4_t VPCS_ATTR NOINLINE V_NAME_F2 (atan2pi) (float32x4_t y,
|
|
float32x4_t x)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
|
|
uint32x4_t ix = vreinterpretq_u32_f32 (x);
|
|
uint32x4_t iy = vreinterpretq_u32_f32 (y);
|
|
|
|
uint32x4_t special_cases
|
|
= vorrq_u32 (zeroinfnan (ix, d), zeroinfnan (iy, d));
|
|
|
|
uint32x4_t sign_x = vandq_u32 (ix, SignMask);
|
|
uint32x4_t sign_y = vandq_u32 (iy, SignMask);
|
|
uint32x4_t sign_xy = veorq_u32 (sign_x, sign_y);
|
|
|
|
float32x4_t ax = vabsq_f32 (x);
|
|
float32x4_t ay = vabsq_f32 (y);
|
|
|
|
uint32x4_t pred_xlt0 = vcltzq_f32 (x);
|
|
uint32x4_t pred_aygtax = vcgtq_f32 (ay, ax);
|
|
|
|
/* Set up z for evaluation of atanpif. */
|
|
float32x4_t num = vbslq_f32 (pred_aygtax, vnegq_f32 (ax), ay);
|
|
float32x4_t den = vbslq_f32 (pred_aygtax, ay, ax);
|
|
float32x4_t z = vdivq_f32 (num, den);
|
|
|
|
/* Work out the correct shift for atan2pi:
|
|
-1.0 when x < 0 and ax < ay
|
|
-0.5 when x < 0 and ax > ay
|
|
0 when x >= 0 and ax < ay
|
|
0.5 when x >= 0 and ax > ay. */
|
|
float32x4_t shift = vreinterpretq_f32_u32 (
|
|
vandq_u32 (pred_xlt0, vreinterpretq_u32_f32 (v_f32 (-1.0f))));
|
|
float32x4_t shift2 = vreinterpretq_f32_u32 (
|
|
vandq_u32 (pred_aygtax, vreinterpretq_u32_f32 (v_f32 (0.5f))));
|
|
shift = vaddq_f32 (shift, shift2);
|
|
|
|
/* Calculate the polynomial approximation. */
|
|
float32x4_t z2 = vmulq_f32 (z, z);
|
|
float32x4_t z3 = vmulq_f32 (z2, z);
|
|
float32x4_t z4 = vmulq_f32 (z2, z2);
|
|
float32x4_t z8 = vmulq_f32 (z4, z4);
|
|
|
|
float32x4_t c2468 = vld1q_f32 (&d->c2);
|
|
|
|
float32x4_t p12 = vfmaq_laneq_f32 (d->c1, z2, c2468, 0);
|
|
float32x4_t p34 = vfmaq_laneq_f32 (d->c3, z2, c2468, 1);
|
|
float32x4_t p56 = vfmaq_laneq_f32 (d->c5, z2, c2468, 2);
|
|
float32x4_t p78 = vfmaq_laneq_f32 (d->c7, z2, c2468, 3);
|
|
float32x4_t p14 = vfmaq_f32 (p12, z4, p34);
|
|
float32x4_t p58 = vfmaq_f32 (p56, z4, p78);
|
|
|
|
float32x4_t poly = vfmaq_f32 (p14, z8, p58);
|
|
|
|
/* y = shift + z * P(z^2). */
|
|
float32x4_t ret = vfmaq_f32 (shift, z, d->c0);
|
|
ret = vfmaq_f32 (ret, z3, poly);
|
|
|
|
if (__glibc_unlikely (v_any_u32 (special_cases)))
|
|
{
|
|
return special_case (y, x, ret, sign_xy, special_cases);
|
|
}
|
|
|
|
/* Account for the sign of y. */
|
|
return vreinterpretq_f32_u32 (
|
|
veorq_u32 (vreinterpretq_u32_f32 (ret), sign_xy));
|
|
}
|
|
libmvec_hidden_def (V_NAME_F2 (atan2pi))
|
|
HALF_WIDTH_ALIAS_F2 (atan2pi)
|