glibc/sysdeps/aarch64/fpu/sv_log1p_inline.h

158 lines
6.0 KiB
C

/* Helper for double-precision SVE routines which depend on log1p
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_SV_LOG1P_INLINE_H
#define AARCH64_FPU_SV_LOG1P_INLINE_H
#include "sv_math.h"
static const struct sv_log1p_data
{
double c0, c2, c4, c6, c8, c10, c12, c14, c16;
double c1, c3, c5, c7, c9, c11, c13, c15, c17, c18;
double ln2_lo, ln2_hi;
uint64_t hf_rt2_top;
uint64_t one_m_hf_rt2_top;
uint32_t bottom_mask;
int64_t one_top;
} sv_log1p_data = {
/* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1].
*/
.c0 = -0x1.ffffffffffffbp-2,
.c1 = 0x1.55555555551a9p-2,
.c2 = -0x1.00000000008e3p-2,
.c3 = 0x1.9999999a32797p-3,
.c4 = -0x1.555555552fecfp-3,
.c5 = 0x1.249248e071e5ap-3,
.c6 = -0x1.ffffff8bf8482p-4,
.c7 = 0x1.c71c8f07da57ap-4,
.c8 = -0x1.9999ca4ccb617p-4,
.c9 = 0x1.7459ad2e1dfa3p-4,
.c10 = -0x1.554d2680a3ff2p-4,
.c11 = 0x1.3b4c54d487455p-4,
.c12 = -0x1.2548a9ffe80e6p-4,
.c13 = 0x1.0f389a24b2e07p-4,
.c14 = -0x1.eee4db15db335p-5,
.c15 = 0x1.e95b494d4a5ddp-5,
.c16 = -0x1.15fdf07cb7c73p-4,
.c17 = 0x1.0310b70800fcfp-4,
.c18 = -0x1.cfa7385bdb37ep-6,
.ln2_lo = 0x1.62e42fefa3800p-1,
.ln2_hi = 0x1.ef35793c76730p-45,
/* top32(asuint64(sqrt(2)/2)) << 32. */
.hf_rt2_top = 0x3fe6a09e00000000,
/* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */
.one_m_hf_rt2_top = 0x00095f6200000000,
.bottom_mask = 0xffffffff,
.one_top = 0x3ff
};
static inline svfloat64_t
sv_log1p_inline (svfloat64_t x, const svbool_t pg)
{
/* Helper for calculating log(x + 1). Adapted from v_log1p_inline.h, which
differs from advsimd/log1p.c by:
- No special-case handling - this should be dealt with by the caller.
- Pairwise Horner polynomial evaluation for improved accuracy.
- Optionally simulate the shortcut for k=0, used in the scalar routine,
using svsel, for improved accuracy when the argument to log1p is close
to 0. This feature is enabled by defining WANT_SV_LOG1P_K0_SHORTCUT as 1
in the source of the caller before including this file.
See sve/log1p.c for details of the algorithm. */
const struct sv_log1p_data *d = ptr_barrier (&sv_log1p_data);
svfloat64_t m = svadd_x (pg, x, 1);
svuint64_t mi = svreinterpret_u64 (m);
svuint64_t u = svadd_x (pg, mi, d->one_m_hf_rt2_top);
svint64_t ki
= svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, u, 52)), d->one_top);
svfloat64_t k = svcvt_f64_x (pg, ki);
/* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
svuint64_t utop
= svadd_x (pg, svand_x (pg, u, 0x000fffff00000000), d->hf_rt2_top);
svuint64_t u_red = svorr_x (pg, utop, svand_x (pg, mi, d->bottom_mask));
svfloat64_t f = svsub_x (pg, svreinterpret_f64 (u_red), 1);
/* Correction term c/m. */
svfloat64_t c = svsub_x (pg, x, svsub_x (pg, m, 1));
svfloat64_t cm;
#ifndef WANT_SV_LOG1P_K0_SHORTCUT
#error \
"Cannot use sv_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0"
#elif WANT_SV_LOG1P_K0_SHORTCUT
/* Shortcut if k is 0 - set correction term to 0 and f to x. The result is
that the approximation is solely the polynomial. */
svbool_t knot0 = svcmpne (pg, k, 0);
cm = svdiv_z (knot0, c, m);
if (__glibc_likely (!svptest_any (pg, knot0)))
{
f = svsel (knot0, f, x);
}
#else
/* No shortcut. */
cm = svdiv_x (pg, c, m);
#endif
/* Approximate log1p(f) on the reduced input using a polynomial. */
svfloat64_t f2 = svmul_x (svptrue_b64 (), f, f),
f4 = svmul_x (svptrue_b64 (), f2, f2),
f8 = svmul_x (svptrue_b64 (), f4, f4),
f16 = svmul_x (svptrue_b64 (), f8, f8);
svfloat64_t c13 = svld1rq (svptrue_b64 (), &d->c1);
svfloat64_t c57 = svld1rq (svptrue_b64 (), &d->c5);
svfloat64_t c911 = svld1rq (svptrue_b64 (), &d->c9);
svfloat64_t c1315 = svld1rq (svptrue_b64 (), &d->c13);
svfloat64_t c1718 = svld1rq (svptrue_b64 (), &d->c17);
/* Order-18 Estrin scheme. */
svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), f, c13, 0);
svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), f, c13, 1);
svfloat64_t p45 = svmla_lane (sv_f64 (d->c4), f, c57, 0);
svfloat64_t p67 = svmla_lane (sv_f64 (d->c6), f, c57, 1);
svfloat64_t p03 = svmla_x (pg, p01, f2, p23);
svfloat64_t p47 = svmla_x (pg, p45, f2, p67);
svfloat64_t p07 = svmla_x (pg, p03, f4, p47);
svfloat64_t p89 = svmla_lane (sv_f64 (d->c8), f, c911, 0);
svfloat64_t p1011 = svmla_lane (sv_f64 (d->c10), f, c911, 1);
svfloat64_t p1213 = svmla_lane (sv_f64 (d->c12), f, c1315, 0);
svfloat64_t p1415 = svmla_lane (sv_f64 (d->c14), f, c1315, 1);
svfloat64_t p811 = svmla_x (pg, p89, f2, p1011);
svfloat64_t p1215 = svmla_x (pg, p1213, f2, p1415);
svfloat64_t p815 = svmla_x (pg, p811, f4, p1215);
svfloat64_t p015 = svmla_x (pg, p07, f8, p815);
svfloat64_t p1617 = svmla_lane (sv_f64 (d->c16), f, c1718, 0);
svfloat64_t p1618 = svmla_lane (p1617, f2, c1718, 1);
svfloat64_t p = svmla_x (pg, p015, f16, p1618);
/* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */
svfloat64_t ln2_lo_hi = svld1rq (svptrue_b64 (), &d->ln2_lo);
svfloat64_t ylo = svmla_lane (cm, k, ln2_lo_hi, 0);
svfloat64_t yhi = svmla_lane (f, k, ln2_lo_hi, 1);
return svmad_x (pg, p, f2, svadd_x (pg, ylo, yhi));
}
#endif