/**************************************************************************** ** ** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies). ** Contact: http://www.qt-project.org/legal ** ** This file is part of the QtQml module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and Digia. For licensing terms and ** conditions see http://qt.digia.com/licensing. For further information ** use the contact form at http://qt.digia.com/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** In addition, as a special exception, Digia gives you certain additional ** rights. These rights are described in the Digia Qt LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qv4arraydata_p.h" #include "qv4object_p.h" #include "qv4functionobject_p.h" #include "qv4mm_p.h" #include "qv4runtime_p.h" using namespace QV4; const QV4::ManagedVTable QV4::ArrayData::static_vtbl = { 0, QV4::ArrayData::IsExecutionContext, QV4::ArrayData::IsString, QV4::ArrayData::IsObject, QV4::ArrayData::IsFunctionObject, QV4::ArrayData::IsErrorObject, QV4::ArrayData::IsArrayData, 0, QV4::ArrayData::MyType, "ArrayData", Q_VTABLE_FUNCTION(QV4::ArrayData, destroy), 0, isEqualTo }; const ArrayVTable SimpleArrayData::static_vtbl = { DEFINE_MANAGED_VTABLE_INT(SimpleArrayData, 0), Heap::ArrayData::Simple, SimpleArrayData::reallocate, SimpleArrayData::get, SimpleArrayData::put, SimpleArrayData::putArray, SimpleArrayData::del, SimpleArrayData::setAttribute, SimpleArrayData::attribute, SimpleArrayData::push_front, SimpleArrayData::pop_front, SimpleArrayData::truncate, SimpleArrayData::length }; const ArrayVTable SparseArrayData::static_vtbl = { DEFINE_MANAGED_VTABLE_INT(SparseArrayData, 0), Heap::ArrayData::Sparse, SparseArrayData::reallocate, SparseArrayData::get, SparseArrayData::put, SparseArrayData::putArray, SparseArrayData::del, SparseArrayData::setAttribute, SparseArrayData::attribute, SparseArrayData::push_front, SparseArrayData::pop_front, SparseArrayData::truncate, SparseArrayData::length }; Q_STATIC_ASSERT(sizeof(Heap::ArrayData) == sizeof(Heap::SimpleArrayData)); Q_STATIC_ASSERT(sizeof(Heap::ArrayData) == sizeof(Heap::SparseArrayData)); void ArrayData::realloc(Object *o, Type newType, uint requested, bool enforceAttributes) { Scope scope(o->engine()); Scoped d(scope, o->arrayData()); uint alloc = 8; uint toCopy = 0; uint offset = 0; if (d) { bool hasAttrs = d->attrs(); enforceAttributes |= hasAttrs; if (requested <= d->alloc() && newType == d->type() && hasAttrs == enforceAttributes) return; if (alloc < d->alloc()) alloc = d->alloc(); if (d->type() < Heap::ArrayData::Sparse) { offset = d->d()->offset; toCopy = d->d()->len; } else { toCopy = d->alloc(); } if (d->type() > newType) newType = d->type(); } if (enforceAttributes && newType == Heap::ArrayData::Simple) newType = Heap::ArrayData::Complex; while (alloc < requested) alloc *= 2; size_t size = sizeof(Heap::ArrayData) + (alloc - 1)*sizeof(Value); if (enforceAttributes) size += alloc*sizeof(PropertyAttributes); Scoped newData(scope); if (newType < Heap::ArrayData::Sparse) { Heap::SimpleArrayData *n = static_cast(scope.engine->memoryManager->allocManaged(size)); new (n) Heap::SimpleArrayData(scope.engine); n->offset = 0; n->len = d ? d->d()->len : 0; newData = n; } else { Heap::SparseArrayData *n = static_cast(scope.engine->memoryManager->allocManaged(size)); new (n) Heap::SparseArrayData(scope.engine); newData = n; } newData->setAlloc(alloc); newData->setType(newType); newData->setAttrs(enforceAttributes ? reinterpret_cast(newData->d()->arrayData + alloc) : 0); o->setArrayData(newData); if (d) { if (enforceAttributes) { if (d->attrs()) memcpy(newData->attrs(), d->attrs(), sizeof(PropertyAttributes)*toCopy); else for (uint i = 0; i < toCopy; ++i) newData->attrs()[i] = Attr_Data; } if (toCopy > d->d()->alloc - offset) { uint copyFromStart = toCopy - (d->d()->alloc - offset); memcpy(newData->d()->arrayData + toCopy - copyFromStart, d->d()->arrayData, sizeof(Value)*copyFromStart); toCopy -= copyFromStart; } memcpy(newData->d()->arrayData, d->d()->arrayData + offset, sizeof(Value)*toCopy); } if (newType != Heap::ArrayData::Sparse) return; Heap::SparseArrayData *sparse = static_cast(newData->d()); uint *lastFree; if (d && d->type() == Heap::ArrayData::Sparse) { Heap::SparseArrayData *old = static_cast(d->d()); sparse->sparse = old->sparse; old->sparse = 0; sparse->freeList = old->freeList; lastFree = &sparse->freeList; } else { sparse->sparse = new SparseArray; lastFree = &sparse->freeList; for (uint i = 0; i < toCopy; ++i) { if (!sparse->arrayData[i].isEmpty()) { SparseArrayNode *n = sparse->sparse->insert(i); n->value = i; } else { *lastFree = i; sparse->arrayData[i].tag = Value::Empty_Type; lastFree = &sparse->arrayData[i].uint_32; } } } if (toCopy < sparse->alloc) { for (uint i = toCopy; i < sparse->alloc; ++i) { *lastFree = i; sparse->arrayData[i].tag = Value::Empty_Type; lastFree = &sparse->arrayData[i].uint_32; } *lastFree = UINT_MAX; } // ### Could explicitly free the old data } ArrayData *SimpleArrayData::reallocate(Object *o, uint n, bool enforceAttributes) { realloc(o, Heap::ArrayData::Simple, n, enforceAttributes); return o->arrayData(); } void ArrayData::ensureAttributes(Object *o) { if (o->arrayData() && o->arrayData()->attrs()) return; ArrayData::realloc(o, Heap::ArrayData::Simple, 0, true); } void SimpleArrayData::markObjects(Heap::Base *d, ExecutionEngine *e) { Heap::SimpleArrayData *dd = static_cast(d); uint l = dd->len; for (uint i = 0; i < l; ++i) dd->arrayData[i].mark(e); } ReturnedValue SimpleArrayData::get(const ArrayData *d, uint index) { const SimpleArrayData *dd = static_cast(d); if (index >= dd->len()) return Primitive::emptyValue().asReturnedValue(); return dd->data(index).asReturnedValue(); } bool SimpleArrayData::put(Object *o, uint index, ValueRef value) { Heap::SimpleArrayData *dd = static_cast(o->d()->arrayData); Q_ASSERT(index >= dd->len || !dd->attrs || !dd->attrs[index].isAccessor()); // ### honour attributes dd->data(index) = value; if (index >= dd->len) { if (dd->attrs) dd->attrs[index] = Attr_Data; dd->len = index + 1; } return true; } bool SimpleArrayData::del(Object *o, uint index) { Heap::SimpleArrayData *dd = static_cast(o->d()->arrayData); if (index >= dd->len) return true; if (!dd->attrs || dd->attrs[index].isConfigurable()) { dd->data(index) = Primitive::emptyValue(); if (dd->attrs) dd->attrs[index] = Attr_Data; return true; } if (dd->data(index).isEmpty()) return true; return false; } void SimpleArrayData::setAttribute(Object *o, uint index, PropertyAttributes attrs) { o->arrayData()->attrs()[index] = attrs; } PropertyAttributes SimpleArrayData::attribute(const ArrayData *d, uint index) { return d->attrs()[index]; } void SimpleArrayData::push_front(Object *o, Value *values, uint n) { Heap::SimpleArrayData *dd = static_cast(o->d()->arrayData); Q_ASSERT(!dd->attrs); if (dd->len + n > dd->alloc) { realloc(o, Heap::ArrayData::Simple, dd->len + n, false); Q_ASSERT(o->d()->arrayData->type == Heap::ArrayData::Simple); dd = static_cast(o->d()->arrayData); } dd->offset = (dd->offset - n) % dd->alloc; dd->len += n; for (uint i = 0; i < n; ++i) dd->data(i) = values[i].asReturnedValue(); } ReturnedValue SimpleArrayData::pop_front(Object *o) { Heap::SimpleArrayData *dd = static_cast(o->d()->arrayData); Q_ASSERT(!dd->attrs); if (!dd->len) return Encode::undefined(); ReturnedValue v = dd->data(0).isEmpty() ? Encode::undefined() : dd->data(0).asReturnedValue(); dd->offset = (dd->offset + 1) % dd->alloc; --dd->len; return v; } uint SimpleArrayData::truncate(Object *o, uint newLen) { Heap::SimpleArrayData *dd = static_cast(o->d()->arrayData); if (dd->len < newLen) return newLen; if (!dd->attrs) { dd->len = newLen; return newLen; } while (dd->len > newLen) { if (!dd->data(dd->len - 1).isEmpty() && !dd->attrs[dd->len - 1].isConfigurable()) return dd->len; --dd->len; } return dd->len; } uint SimpleArrayData::length(const ArrayData *d) { return static_cast(d)->len(); } bool SimpleArrayData::putArray(Object *o, uint index, Value *values, uint n) { SimpleArrayData *dd = static_cast(o->arrayData()); if (index + n > dd->alloc()) { reallocate(o, index + n + 1, false); dd = static_cast(o->arrayData()); } for (uint i = dd->len(); i < index; ++i) dd->data(i) = Primitive::emptyValue(); for (uint i = 0; i < n; ++i) dd->data(index + i) = values[i]; dd->len() = qMax(dd->len(), index + n); return true; } void SparseArrayData::free(ArrayData *d, uint idx) { Q_ASSERT(d && d->type() == Heap::ArrayData::Sparse); SparseArrayData *dd = static_cast(d); Value *v = dd->arrayData() + idx; if (dd->attrs() && dd->attrs()[idx].isAccessor()) { // double slot, free both. Order is important, so we have a double slot for allocation again afterwards. v[1].tag = Value::Empty_Type; v[1].uint_32 = dd->freeList(); v[0].tag = Value::Empty_Type; v[0].uint_32 = idx + 1; } else { v->tag = Value::Empty_Type; v->uint_32 = dd->freeList(); } dd->freeList() = idx; if (dd->attrs()) dd->attrs()[idx].clear(); } void SparseArrayData::markObjects(Heap::Base *d, ExecutionEngine *e) { Heap::SparseArrayData *dd = static_cast(d); uint l = dd->alloc; for (uint i = 0; i < l; ++i) dd->arrayData[i].mark(e); } ArrayData *SparseArrayData::reallocate(Object *o, uint n, bool enforceAttributes) { realloc(o, Heap::ArrayData::Sparse, n, enforceAttributes); return o->arrayData(); } // double slots are required for accessor properties uint SparseArrayData::allocate(Object *o, bool doubleSlot) { Q_ASSERT(o->arrayData()->type() == Heap::ArrayData::Sparse); SparseArrayData *dd = static_cast(o->arrayData()); if (doubleSlot) { uint *last = &dd->freeList(); while (1) { if (*last == UINT_MAX) { reallocate(o, o->arrayData()->alloc() + 2, true); dd = static_cast(o->arrayData()); last = &dd->freeList(); Q_ASSERT(*last != UINT_MAX); } Q_ASSERT(dd->arrayData()[*last].uint_32 != *last); if (dd->arrayData()[*last].uint_32 == (*last + 1)) { // found two slots in a row uint idx = *last; *last = dd->arrayData()[*last + 1].uint_32; o->arrayData()->attrs()[idx] = Attr_Accessor; return idx; } last = &dd->arrayData()[*last].uint_32; } } else { if (dd->freeList() == UINT_MAX) { reallocate(o, o->arrayData()->alloc() + 1, false); dd = static_cast(o->arrayData()); } uint idx = dd->freeList(); Q_ASSERT(idx != UINT_MAX); dd->freeList() = dd->arrayData()[idx].uint_32; if (dd->attrs()) dd->attrs()[idx] = Attr_Data; return idx; } } ReturnedValue SparseArrayData::get(const ArrayData *d, uint index) { const SparseArrayData *s = static_cast(d); index = s->mappedIndex(index); if (index == UINT_MAX) return Primitive::emptyValue().asReturnedValue(); return s->arrayData()[index].asReturnedValue(); } bool SparseArrayData::put(Object *o, uint index, ValueRef value) { if (value->isEmpty()) return true; SparseArrayData *s = static_cast(o->arrayData()); SparseArrayNode *n = s->sparse()->insert(index); Q_ASSERT(n->value == UINT_MAX || !o->arrayData()->attrs() || !o->arrayData()->attrs()[n->value].isAccessor()); if (n->value == UINT_MAX) n->value = allocate(o); s->arrayData()[n->value] = value; if (s->attrs()) s->attrs()[n->value] = Attr_Data; return true; } bool SparseArrayData::del(Object *o, uint index) { SparseArrayData *dd = static_cast(o->arrayData()); SparseArrayNode *n = dd->sparse()->findNode(index); if (!n) return true; uint pidx = n->value; Q_ASSERT(!dd->arrayData()[pidx].isEmpty()); bool isAccessor = false; if (dd->attrs()) { if (!dd->attrs()[pidx].isConfigurable()) return false; isAccessor = dd->attrs()[pidx].isAccessor(); dd->attrs()[pidx] = Attr_Data; } if (isAccessor) { // free up both indices dd->arrayData()[pidx + 1].tag = Value::Empty_Type; dd->arrayData()[pidx + 1].uint_32 = static_cast(dd)->freeList(); dd->arrayData()[pidx].tag = Value::Undefined_Type; dd->arrayData()[pidx].uint_32 = pidx + 1; } else { dd->arrayData()[pidx].tag = Value::Empty_Type; dd->arrayData()[pidx].uint_32 = static_cast(dd)->freeList(); } dd->freeList() = pidx; dd->sparse()->erase(n); return true; } void SparseArrayData::setAttribute(Object *o, uint index, PropertyAttributes attrs) { SparseArrayData *d = static_cast(o->arrayData()); SparseArrayNode *n = d->sparse()->insert(index); if (n->value == UINT_MAX) { n->value = allocate(o, attrs.isAccessor()); d = static_cast(o->arrayData()); } else if (attrs.isAccessor() != d->attrs()[n->value].isAccessor()) { // need to convert the slot free(d, n->value); n->value = allocate(o, attrs.isAccessor()); } o->arrayData()->attrs()[n->value] = attrs; } PropertyAttributes SparseArrayData::attribute(const ArrayData *d, uint index) { SparseArrayNode *n = static_cast(d)->sparse()->insert(index); if (!n) return PropertyAttributes(); return d->attrs()[n->value]; } void SparseArrayData::push_front(Object *o, Value *values, uint n) { SparseArrayData *d = static_cast(o->arrayData()); Q_ASSERT(!o->arrayData()->attrs()); for (int i = n - 1; i >= 0; --i) { uint idx = allocate(o); d->arrayData()[idx] = values[i]; d->sparse()->push_front(idx); } } ReturnedValue SparseArrayData::pop_front(Object *o) { SparseArrayData *d = static_cast(o->arrayData()); Q_ASSERT(!o->arrayData()->attrs()); uint idx = d->sparse()->pop_front(); ReturnedValue v; if (idx != UINT_MAX) { v = d->arrayData()[idx].asReturnedValue(); free(o->arrayData(), idx); } else { v = Encode::undefined(); } return v; } uint SparseArrayData::truncate(Object *o, uint newLen) { SparseArrayData *d = static_cast(o->arrayData()); SparseArrayNode *begin = d->sparse()->lowerBound(newLen); if (begin != d->sparse()->end()) { SparseArrayNode *it = d->sparse()->end()->previousNode(); while (1) { if (d->attrs()) { if (!d->attrs()[it->value].isConfigurable()) { newLen = it->key() + 1; break; } } free(d, it->value); bool brk = (it == begin); SparseArrayNode *prev = it->previousNode(); static_cast(d)->sparse()->erase(it); if (brk) break; it = prev; } } return newLen; } uint SparseArrayData::length(const ArrayData *d) { const SparseArrayData *dd = static_cast(d); if (!dd->sparse()) return 0; SparseArrayNode *n = dd->sparse()->end(); n = n->previousNode(); return n ? n->key() + 1 : 0; } bool SparseArrayData::putArray(Object *o, uint index, Value *values, uint n) { for (uint i = 0; i < n; ++i) put(o, index + i, values[i]); return true; } uint ArrayData::append(Object *obj, ArrayObject *otherObj, uint n) { Q_ASSERT(!obj->arrayData() || !obj->arrayData()->hasAttributes()); if (!n) return obj->getLength(); ArrayData *other = otherObj->arrayData(); if (other && other->isSparse()) obj->initSparseArray(); else obj->arrayCreate(); uint oldSize = obj->getLength(); if (other && other->isSparse()) { SparseArrayData *os = static_cast(other); if (otherObj->hasAccessorProperty() && other->hasAttributes()) { Scope scope(obj->engine()); ScopedValue v(scope); for (const SparseArrayNode *it = os->sparse()->begin(); it != os->sparse()->end(); it = it->nextNode()) { v = otherObj->getValue(reinterpret_cast(os->arrayData() + it->value), other->attrs()[it->value]); obj->arraySet(oldSize + it->key(), v); } } else { for (const SparseArrayNode *it = static_cast(other)->sparse()->begin(); it != os->sparse()->end(); it = it->nextNode()) obj->arraySet(oldSize + it->key(), ValueRef(os->arrayData()[it->value])); } } else { SimpleArrayData *os = static_cast(other); uint toCopy = n; uint chunk = toCopy; if (chunk > os->alloc() - os->d()->offset) chunk -= os->alloc() - os->d()->offset; obj->arrayPut(oldSize, os->arrayData() + os->d()->offset, chunk); toCopy -= chunk; if (toCopy) obj->arrayPut(oldSize + chunk, os->arrayData(), toCopy); } return oldSize + n; } Property *ArrayData::insert(Object *o, uint index, bool isAccessor) { if (!isAccessor && o->arrayData()->type() != Heap::ArrayData::Sparse) { SimpleArrayData *d = static_cast(o->arrayData()); if (index < 0x1000 || index < d->len() + (d->len() >> 2)) { if (index >= o->arrayData()->alloc()) { o->arrayReserve(index + 1); d = static_cast(o->arrayData()); } if (index >= d->len()) { // mark possible hole in the array for (uint i = d->len(); i < index; ++i) d->data(i) = Primitive::emptyValue(); d->len() = index + 1; } return reinterpret_cast(d->d()->arrayData + d->mappedIndex(index)); } } o->initSparseArray(); SparseArrayData *s = static_cast(o->arrayData()); SparseArrayNode *n = s->sparse()->insert(index); if (n->value == UINT_MAX) n->value = SparseArrayData::allocate(o, isAccessor); return reinterpret_cast(s->arrayData() + n->value); } class ArrayElementLessThan { public: inline ArrayElementLessThan(ExecutionEngine *engine, Object *thisObject, const ValueRef comparefn) : m_engine(engine), thisObject(thisObject), m_comparefn(comparefn) {} bool operator()(Value v1, Value v2) const; private: ExecutionEngine *m_engine; Object *thisObject; const ValueRef m_comparefn; }; bool ArrayElementLessThan::operator()(Value v1, Value v2) const { Scope scope(m_engine); if (v1.isUndefined() || v1.isEmpty()) return false; if (v2.isUndefined() || v2.isEmpty()) return true; ScopedObject o(scope, m_comparefn); if (o) { Scope scope(o->engine()); ScopedValue result(scope); ScopedCallData callData(scope, 2); callData->thisObject = Primitive::undefinedValue(); callData->args[0] = v1; callData->args[1] = v2; result = Runtime::callValue(scope.engine, m_comparefn, callData); return result->toNumber() < 0; } ScopedString p1s(scope, v1.toString(scope.engine)); ScopedString p2s(scope, v2.toString(scope.engine)); return p1s->toQString() < p2s->toQString(); } template void sortHelper(RandomAccessIterator start, RandomAccessIterator end, const T &t, LessThan lessThan) { top: int span = int(end - start); if (span < 2) return; --end; RandomAccessIterator low = start, high = end - 1; RandomAccessIterator pivot = start + span / 2; if (lessThan(*end, *start)) qSwap(*end, *start); if (span == 2) return; if (lessThan(*pivot, *start)) qSwap(*pivot, *start); if (lessThan(*end, *pivot)) qSwap(*end, *pivot); if (span == 3) return; qSwap(*pivot, *end); while (low < high) { while (low < high && lessThan(*low, *end)) ++low; while (high > low && lessThan(*end, *high)) --high; if (low < high) { qSwap(*low, *high); ++low; --high; } else { break; } } if (lessThan(*low, *end)) ++low; qSwap(*end, *low); sortHelper(start, low, t, lessThan); start = low + 1; ++end; goto top; } void ArrayData::sort(ExecutionEngine *engine, Object *thisObject, const ValueRef comparefn, uint len) { if (!len) return; if (!thisObject->arrayData() || !thisObject->arrayData()->length()) return; if (!(comparefn->isUndefined() || comparefn->asObject())) { engine->throwTypeError(); return; } // The spec says the sorting goes through a series of get,put and delete operations. // this implies that the attributes don't get sorted around. if (thisObject->arrayData()->type() == Heap::ArrayData::Sparse) { // since we sort anyway, we can simply iterate over the entries in the sparse // array and append them one by one to a regular one. SparseArrayData *sparse = static_cast(thisObject->arrayData()); if (!sparse->sparse()->nEntries()) return; thisObject->setArrayData(0); ArrayData::realloc(thisObject, Heap::ArrayData::Simple, sparse->sparse()->nEntries(), sparse->attrs() ? true : false); SimpleArrayData *d = static_cast(thisObject->arrayData()); SparseArrayNode *n = sparse->sparse()->begin(); uint i = 0; if (sparse->attrs()) { while (n != sparse->sparse()->end()) { if (n->value >= len) break; PropertyAttributes a = sparse->attrs() ? sparse->attrs()[n->value] : Attr_Data; d->data(i) = thisObject->getValue(reinterpret_cast(sparse->arrayData() + n->value), a); d->attrs()[i] = a.isAccessor() ? Attr_Data : a; n = n->nextNode(); ++i; } } else { while (n != sparse->sparse()->end()) { if (n->value >= len) break; d->data(i) = sparse->arrayData()[n->value]; n = n->nextNode(); ++i; } } d->len() = i; if (len > i) len = i; if (n != sparse->sparse()->end()) { // have some entries outside the sort range that we need to ignore when sorting thisObject->initSparseArray(); while (n != sparse->sparse()->end()) { PropertyAttributes a = sparse->attrs() ? sparse->attrs()[n->value] : Attr_Data; thisObject->arraySet(n->value, *reinterpret_cast(sparse->arrayData() + n->value), a); n = n->nextNode(); } } // ### explicitly delete sparse } else { SimpleArrayData *d = static_cast(thisObject->arrayData()); if (len > d->len()) len = d->len(); // sort empty values to the end for (uint i = 0; i < len; i++) { if (d->data(i).isEmpty()) { while (--len > i) if (!d->data(len).isEmpty()) break; Q_ASSERT(!d->attrs() || !d->attrs()[len].isAccessor()); d->data(i) = d->data(len); d->data(len) = Primitive::emptyValue(); } } if (!len) return; } ArrayElementLessThan lessThan(engine, thisObject, comparefn); Value *begin = thisObject->arrayData()->d()->arrayData; sortHelper(begin, begin + len, *begin, lessThan); #ifdef CHECK_SPARSE_ARRAYS thisObject->initSparseArray(); #endif }