rv1126-uboot/lib/rsa/rsa-verify.c

686 lines
17 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2013, Google Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <crypto.h>
#include <fdtdec.h>
#include <misc.h>
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <asm/types.h>
#include <asm/unaligned.h>
#include <dm.h>
#else
#include "fdt_host.h"
#include "mkimage.h"
#include <fdt_support.h>
#endif
#include <u-boot/rsa-mod-exp.h>
#include <u-boot/rsa.h>
/* Default public exponent for backward compatibility */
#define RSA_DEFAULT_PUBEXP 65537
/**
* rsa_verify_padding() - Verify RSA message padding is valid
*
* Verify a RSA message's padding is consistent with PKCS1.5
* padding as described in the RSA PKCS#1 v2.1 standard.
*
* @msg: Padded message
* @pad_len: Number of expected padding bytes
* @algo: Checksum algo structure having information on DER encoding etc.
* @return 0 on success, != 0 on failure
*/
static int rsa_verify_padding(const uint8_t *msg, const int pad_len,
struct checksum_algo *algo)
{
int ff_len;
int ret;
/* first byte must be 0x00 */
ret = *msg++;
/* second byte must be 0x01 */
ret |= *msg++ ^ 0x01;
/* next ff_len bytes must be 0xff */
ff_len = pad_len - algo->der_len - 3;
ret |= *msg ^ 0xff;
ret |= memcmp(msg, msg+1, ff_len-1);
msg += ff_len;
/* next byte must be 0x00 */
ret |= *msg++;
/* next der_len bytes must match der_prefix */
ret |= memcmp(msg, algo->der_prefix, algo->der_len);
return ret;
}
#if !defined(USE_HOSTCC)
#if CONFIG_IS_ENABLED(FIT_HW_CRYPTO)
static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
{
int i;
for (i = 0; i < len; i++)
dst[i] = fdt32_to_cpu(src[len - 1 - i]);
}
static int rsa_mod_exp_hw(struct key_prop *prop, const uint8_t *sig,
const uint32_t sig_len, const uint32_t key_len,
uint8_t *output)
{
struct udevice *dev;
uint8_t sig_reverse[sig_len];
uint8_t buf[sig_len];
rsa_key rsa_key;
int i, ret;
if (key_len != RSA2048_BYTES)
return -EINVAL;
rsa_key.algo = CRYPTO_RSA2048;
rsa_key.n = malloc(key_len);
rsa_key.e = malloc(key_len);
rsa_key.c = malloc(key_len);
if (!rsa_key.n || !rsa_key.e || !rsa_key.c)
return -ENOMEM;
rsa_convert_big_endian(rsa_key.n, (uint32_t *)prop->modulus,
key_len / sizeof(uint32_t));
rsa_convert_big_endian(rsa_key.e, (uint32_t *)prop->public_exponent_BN,
key_len / sizeof(uint32_t));
#ifdef CONFIG_ROCKCHIP_CRYPTO_V1
rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_c,
key_len / sizeof(uint32_t));
#else
rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_np,
key_len / sizeof(uint32_t));
#endif
for (i = 0; i < sig_len; i++)
sig_reverse[sig_len-1-i] = sig[i];
dev = crypto_get_device(rsa_key.algo);
if (!dev) {
printf("No crypto device for expected RSA\n");
return -ENODEV;
}
ret = crypto_rsa_verify(dev, &rsa_key, (u8 *)sig_reverse, buf);
if (ret)
goto out;
for (i = 0; i < sig_len; i++)
sig_reverse[sig_len-1-i] = buf[i];
memcpy(output, sig_reverse, sig_len);
out:
free(rsa_key.n);
free(rsa_key.e);
free(rsa_key.c);
return ret;
}
#endif
#endif
int padding_pkcs_15_verify(struct image_sign_info *info,
uint8_t *msg, int msg_len,
const uint8_t *hash, int hash_len)
{
struct checksum_algo *checksum = info->checksum;
int ret, pad_len = msg_len - checksum->checksum_len;
/* Check pkcs1.5 padding bytes. */
ret = rsa_verify_padding(msg, pad_len, checksum);
if (ret) {
debug("In RSAVerify(): Padding check failed!\n");
return -EINVAL;
}
/* Check hash. */
if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) {
debug("In RSAVerify(): Hash check failed!\n");
return -EACCES;
}
return 0;
}
#ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT
static void u32_i2osp(uint32_t val, uint8_t *buf)
{
buf[0] = (uint8_t)((val >> 24) & 0xff);
buf[1] = (uint8_t)((val >> 16) & 0xff);
buf[2] = (uint8_t)((val >> 8) & 0xff);
buf[3] = (uint8_t)((val >> 0) & 0xff);
}
/**
* mask_generation_function1() - generate an octet string
*
* Generate an octet string used to check rsa signature.
* It use an input octet string and a hash function.
*
* @checksum: A Hash function
* @seed: Specifies an input variable octet string
* @seed_len: Size of the input octet string
* @output: Specifies the output octet string
* @output_len: Size of the output octet string
* @return 0 if the octet string was correctly generated, others on error
*/
static int mask_generation_function1(struct checksum_algo *checksum,
uint8_t *seed, int seed_len,
uint8_t *output, int output_len)
{
struct image_region region[2];
int ret = 0, i, i_output = 0, region_count = 2;
uint32_t counter = 0;
uint8_t buf_counter[4], *tmp;
int hash_len = checksum->checksum_len;
memset(output, 0, output_len);
region[0].data = seed;
region[0].size = seed_len;
region[1].data = &buf_counter[0];
region[1].size = 4;
tmp = malloc(hash_len);
if (!tmp) {
debug("%s: can't allocate array tmp\n", __func__);
ret = -ENOMEM;
goto out;
}
while (i_output < output_len) {
u32_i2osp(counter, &buf_counter[0]);
ret = checksum->calculate(checksum->name,
region, region_count,
tmp);
if (ret < 0) {
debug("%s: Error in checksum calculation\n", __func__);
goto out;
}
i = 0;
while ((i_output < output_len) && (i < hash_len)) {
output[i_output] = tmp[i];
i_output++;
i++;
}
counter++;
}
out:
free(tmp);
return ret;
}
static int compute_hash_prime(struct checksum_algo *checksum,
uint8_t *pad, int pad_len,
uint8_t *hash, int hash_len,
uint8_t *salt, int salt_len,
uint8_t *hprime)
{
struct image_region region[3];
int ret, region_count = 3;
region[0].data = pad;
region[0].size = pad_len;
region[1].data = hash;
region[1].size = hash_len;
region[2].data = salt;
region[2].size = salt_len;
ret = checksum->calculate(checksum->name, region, region_count, hprime);
if (ret < 0) {
debug("%s: Error in checksum calculation\n", __func__);
goto out;
}
out:
return ret;
}
int padding_pss_verify(struct image_sign_info *info,
uint8_t *msg, int msg_len,
const uint8_t *hash, int hash_len)
{
uint8_t *masked_db = NULL;
int masked_db_len = msg_len - hash_len - 1;
uint8_t *h = NULL, *hprime = NULL;
int h_len = hash_len;
uint8_t *db_mask = NULL;
int db_mask_len = masked_db_len;
uint8_t *db = NULL, *salt = NULL;
int db_len = masked_db_len, salt_len = msg_len - hash_len - 2;
uint8_t pad_zero[8] = { 0 };
int ret, i, leftmost_bits = 1;
uint8_t leftmost_mask;
struct checksum_algo *checksum = info->checksum;
/* first, allocate everything */
masked_db = malloc(masked_db_len);
h = malloc(h_len);
db_mask = malloc(db_mask_len);
db = malloc(db_len);
salt = malloc(salt_len);
hprime = malloc(hash_len);
if (!masked_db || !h || !db_mask || !db || !salt || !hprime) {
printf("%s: can't allocate some buffer\n", __func__);
ret = -ENOMEM;
goto out;
}
/* step 4: check if the last byte is 0xbc */
if (msg[msg_len - 1] != 0xbc) {
printf("%s: invalid pss padding (0xbc is missing)\n", __func__);
ret = -EINVAL;
goto out;
}
/* step 5 */
memcpy(masked_db, msg, masked_db_len);
memcpy(h, msg + masked_db_len, h_len);
/* step 6 */
leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits);
if (masked_db[0] & leftmost_mask) {
printf("%s: invalid pss padding ", __func__);
printf("(leftmost bit of maskedDB not zero)\n");
ret = -EINVAL;
goto out;
}
/* step 7 */
mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len);
/* step 8 */
for (i = 0; i < db_len; i++)
db[i] = masked_db[i] ^ db_mask[i];
/* step 9 */
db[0] &= 0xff >> leftmost_bits;
/* step 10 */
if (db[0] != 0x01) {
printf("%s: invalid pss padding ", __func__);
printf("(leftmost byte of db isn't 0x01)\n");
ret = EINVAL;
goto out;
}
/* step 11 */
memcpy(salt, &db[1], salt_len);
/* step 12 & 13 */
compute_hash_prime(checksum, pad_zero, 8,
(uint8_t *)hash, hash_len,
salt, salt_len, hprime);
/* step 14 */
ret = memcmp(h, hprime, hash_len);
out:
free(hprime);
free(salt);
free(db);
free(db_mask);
free(h);
free(masked_db);
return ret;
}
#endif
/**
* rsa_verify_key() - Verify a signature against some data using RSA Key
*
* Verify a RSA PKCS1.5 signature against an expected hash using
* the RSA Key properties in prop structure.
*
* @info: Specifies key and FIT information
* @prop: Specifies key
* @sig: Signature
* @sig_len: Number of bytes in signature
* @hash: Pointer to the expected hash
* @key_len: Number of bytes in rsa key
* @return 0 if verified, -ve on error
*/
static int rsa_verify_key(struct image_sign_info *info,
struct key_prop *prop, const uint8_t *sig,
const uint32_t sig_len, const uint8_t *hash,
const uint32_t key_len)
{
int ret;
struct checksum_algo *checksum = info->checksum;
struct padding_algo *padding = info->padding;
int hash_len = checksum->checksum_len;
if (!prop || !sig || !hash || !checksum)
return -EIO;
if (sig_len != (prop->num_bits / 8)) {
debug("Signature is of incorrect length %d\n", sig_len);
return -EINVAL;
}
debug("Checksum algorithm: %s", checksum->name);
/* Sanity check for stack size */
if (sig_len > RSA_MAX_SIG_BITS / 8) {
debug("Signature length %u exceeds maximum %d\n", sig_len,
RSA_MAX_SIG_BITS / 8);
return -EINVAL;
}
uint8_t buf[sig_len];
#if !defined(USE_HOSTCC)
#if CONFIG_IS_ENABLED(FIT_HW_CRYPTO)
ret = rsa_mod_exp_hw(prop, sig, sig_len, key_len, buf);
#else
struct udevice *mod_exp_dev;
ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev);
if (ret) {
printf("RSA: Can't find Modular Exp implementation\n");
return -EINVAL;
}
ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf);
#endif
#else
ret = rsa_mod_exp_sw(sig, sig_len, prop, buf);
#endif
if (ret) {
debug("Error in Modular exponentation\n");
return ret;
}
ret = padding->verify(info, buf, key_len, hash, hash_len);
if (ret) {
debug("In RSAVerify(): padding check failed!\n");
return ret;
}
return 0;
}
static int rsa_get_key_prop(struct key_prop *prop, struct image_sign_info *info, int node)
{
const void *blob = info->fdt_blob;
int length;
int hash_node;
if (node < 0) {
debug("%s: Skipping invalid node", __func__);
return -EBADF;
}
if (!prop) {
debug("%s: The prop is NULL", __func__);
return -EBADF;
}
prop->burn_key = fdtdec_get_int(blob, node, "burn-key-hash", 0);
prop->num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
prop->n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
prop->public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
if (!prop->public_exponent || length < sizeof(uint64_t))
prop->public_exponent = NULL;
prop->exp_len = sizeof(uint64_t);
prop->modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
prop->public_exponent_BN = fdt_getprop(blob, node, "rsa,exponent-BN", NULL);
prop->rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
#ifdef CONFIG_ROCKCHIP_CRYPTO_V1
hash_node = fdt_subnode_offset(blob, node, "hash@c");
#else
hash_node = fdt_subnode_offset(blob, node, "hash@np");
#endif
if (hash_node >= 0)
prop->hash = fdt_getprop(blob, hash_node, "value", NULL);
if (!prop->num_bits || !prop->modulus) {
debug("%s: Missing RSA key info", __func__);
return -EFAULT;
}
#ifdef CONFIG_ROCKCHIP_CRYPTO_V1
prop->factor_c = fdt_getprop(blob, node, "rsa,c", NULL);
if (!prop.factor_c)
return -EFAULT;
#else
prop->factor_np = fdt_getprop(blob, node, "rsa,np", NULL);
if (!prop->factor_np)
return -EFAULT;
#endif
return 0;
}
/**
* rsa_verify_with_keynode() - Verify a signature against some data using
* information in node with prperties of RSA Key like modulus, exponent etc.
*
* Parse sign-node and fill a key_prop structure with properties of the
* key. Verify a RSA PKCS1.5 signature against an expected hash using
* the properties parsed
*
* @info: Specifies key and FIT information
* @hash: Pointer to the expected hash
* @sig: Signature
* @sig_len: Number of bytes in signature
* @node: Node having the RSA Key properties
* @return 0 if verified, -ve on error
*/
static int rsa_verify_with_keynode(struct image_sign_info *info,
const void *hash, uint8_t *sig,
uint sig_len, int node)
{
struct key_prop prop;
if (rsa_get_key_prop(&prop, info, node))
return -EFAULT;
return rsa_verify_key(info, &prop, sig, sig_len, hash,
info->crypto->key_len);
}
int rsa_verify(struct image_sign_info *info,
const struct image_region region[], int region_count,
uint8_t *sig, uint sig_len)
{
const void *blob = info->fdt_blob;
/* Reserve memory for maximum checksum-length */
uint8_t hash[info->crypto->key_len];
int ndepth, noffset;
int sig_node, node;
char name[100];
int ret;
/*
* Verify that the checksum-length does not exceed the
* rsa-signature-length
*/
if (info->checksum->checksum_len >
info->crypto->key_len) {
debug("%s: invlaid checksum-algorithm %s for %s\n",
__func__, info->checksum->name, info->crypto->name);
return -EINVAL;
}
sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
if (sig_node < 0) {
debug("%s: No signature node found\n", __func__);
return -ENOENT;
}
/* Calculate checksum with checksum-algorithm */
ret = info->checksum->calculate(info->checksum->name,
region, region_count, hash);
if (ret < 0) {
debug("%s: Error in checksum calculation\n", __func__);
return -EINVAL;
}
/* See if we must use a particular key */
if (info->required_keynode != -1) {
ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
info->required_keynode);
if (!ret)
return ret;
}
/* Look for a key that matches our hint */
snprintf(name, sizeof(name), "key-%s", info->keyname);
node = fdt_subnode_offset(blob, sig_node, name);
ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node);
if (!ret)
return ret;
/* No luck, so try each of the keys in turn */
for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth);
(noffset >= 0) && (ndepth > 0);
noffset = fdt_next_node(info->fit, noffset, &ndepth)) {
if (ndepth == 1 && noffset != node) {
ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
noffset);
if (!ret)
break;
}
}
return ret;
}
#if !defined(USE_HOSTCC)
#ifdef CONFIG_SPL_FIT_HW_CRYPTO
int rsa_burn_key_hash(struct image_sign_info *info)
{
char *rsa_key;
void *n, *e, *c;
uint32_t key_len;
struct udevice *dev;
struct key_prop prop;
char name[100] = {0};
char secure_boot_enable = 0;
const void *blob = info->fdt_blob;
uint8_t digest[FIT_MAX_HASH_LEN];
uint8_t digest_read[FIT_MAX_HASH_LEN];
int sig_node, node, digest_len, i, ret = 0;
dev = misc_otp_get_device(OTP_S);
if (!dev)
return -ENODEV;
ret = misc_otp_read(dev, OTP_SECURE_BOOT_ENABLE_ADDR,
&secure_boot_enable, OTP_SECURE_BOOT_ENABLE_SIZE);
if (ret)
return ret;
if (secure_boot_enable)
return 0;
sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
if (sig_node < 0) {
debug("%s: No signature node found\n", __func__);
return -ENOENT;
}
snprintf(name, sizeof(name), "key-%s", info->keyname);
node = fdt_subnode_offset(blob, sig_node, name);
if (rsa_get_key_prop(&prop, info, node))
return -1;
if (!(prop.burn_key))
return -EPERM;
if (!prop.hash || !prop.modulus || !prop.public_exponent_BN)
return -ENOENT;
#ifdef CONFIG_ROCKCHIP_CRYPTO_V1
if (!prop.factor_c)
return -ENOENT;
#else
if (!prop.factor_np)
return -ENOENT;
#endif
key_len = info->crypto->key_len;
if (info->crypto->key_len != RSA2048_BYTES)
return -EINVAL;
rsa_key = malloc(key_len * 3);
if (!rsa_key)
return -ENOMEM;
n = rsa_key;
e = rsa_key + key_len;
c = rsa_key + key_len * 2;
rsa_convert_big_endian(n, (uint32_t *)prop.modulus,
key_len / sizeof(uint32_t));
rsa_convert_big_endian(e, (uint32_t *)prop.public_exponent_BN,
key_len / sizeof(uint32_t));
#ifdef CONFIG_ROCKCHIP_CRYPTO_V1
rsa_convert_big_endian(c, (uint32_t *)prop.factor_c,
key_len / sizeof(uint32_t));
#else
rsa_convert_big_endian(c, (uint32_t *)prop.factor_np,
key_len / sizeof(uint32_t));
#endif
ret = calculate_hash(rsa_key, key_len * 2 + OTP_RSA2048_C_SIZE,
info->checksum->name, digest, &digest_len);
if (ret)
goto error;
if (memcmp(digest, prop.hash, digest_len) != 0) {
printf("RSA: Compare public key fail.\n");
goto error;
}
/* burn key hash here */
ret = misc_otp_read(dev, OTP_RSA_HASH_ADDR, digest_read, OTP_RSA_HASH_SIZE);
if (ret)
goto error;
for (i = 0; i < OTP_RSA_HASH_SIZE; i++) {
if (digest_read[i]) {
printf("RSA: The secure region has been written.\n");
ret = -EIO;
goto error;
}
}
ret = misc_otp_write(dev, OTP_RSA_HASH_ADDR, digest, OTP_RSA_HASH_SIZE);
if (ret)
goto error;
secure_boot_enable = 0xff;
ret = misc_otp_write(dev, OTP_SECURE_BOOT_ENABLE_ADDR,
&secure_boot_enable, OTP_SECURE_BOOT_ENABLE_SIZE);
if (ret)
goto error;
printf("RSAWrite key hash successfully\n");
error:
free(rsa_key);
return ret;
}
#endif
#endif