formats: Improve start code lookup
Refactored so the code is somewhat readable. Added few missing cases for partial start codes.
This commit is contained in:
parent
cc8a144b04
commit
fef90f154c
|
|
@ -21,6 +21,7 @@
|
|||
|
||||
#define PTR_DIFF(a, b) ((ptrdiff_t)((char *)(a) - (char *)(b)))
|
||||
|
||||
// see https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
|
||||
#define haszero64_le(v) (((v) - 0x0101010101010101) & ~(v) & 0x8080808080808080UL)
|
||||
#define haszero32_le(v) (((v) - 0x01010101) & ~(v) & 0x80808080UL)
|
||||
|
||||
|
|
@ -40,30 +41,35 @@ constexpr int GARBAGE_COLLECTION_INTERVAL_MS = 100;
|
|||
// any value less than 30 minutes is ok here, since that is how long it takes to go through all timestamps
|
||||
constexpr int TIME_TO_KEEP_TRACK_OF_PREVIOUS_FRAMES_MS = 5000;
|
||||
|
||||
static inline uint8_t __find_h26x_start(uint32_t value,bool& additional_byte)
|
||||
static inline uint8_t determine_start_prefix_precense(uint32_t value, bool& additional_byte)
|
||||
{
|
||||
additional_byte = false;
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
uint16_t u = (value >> 16) & 0xffff;
|
||||
uint16_t l = (value >> 0) & 0xffff;
|
||||
uint16_t cur_ls = (value >> 16) & 0xffff;
|
||||
uint16_t cur_ms = (value >> 0) & 0xffff;
|
||||
|
||||
// zeros in more significant bytes
|
||||
bool ms4z = (cur_ms == 0);
|
||||
bool ms2z = (((cur_ms >> 8) & 0xff) == 0);
|
||||
|
||||
// possible start code end in less significant bytes
|
||||
bool ls2s = ((cur_ls & 0xff) == 0x01);
|
||||
bool ls4s = (cur_ls == 0x0100);
|
||||
|
||||
bool t1 = (l == 0);
|
||||
bool t2 = ((u & 0xff) == 0x01);
|
||||
bool t3 = (u == 0x0100);
|
||||
bool t4 = (((l >> 8) & 0xff) == 0);
|
||||
#else
|
||||
uint16_t u = (value >> 0) & 0xffff;
|
||||
uint16_t l = (value >> 16) & 0xffff;
|
||||
uint16_t cur_ls = (value >> 0) & 0xffff;
|
||||
uint16_t cur_ms = (value >> 16) & 0xffff;
|
||||
|
||||
bool ms4z = ( cur_ms == 0);
|
||||
bool ms2z = ((cur_ms & 0xff) == 0);
|
||||
bool ls2s = (((cur_ls >> 8) & 0xff) == 0x01);
|
||||
bool ls4s = ( cur_ls == 0x0001);
|
||||
|
||||
bool t1 = (l == 0);
|
||||
bool t2 = (((u >> 8) & 0xff) == 0x01);
|
||||
bool t3 = (u == 0x0001);
|
||||
bool t4 = ((l & 0xff) == 0);
|
||||
#endif
|
||||
|
||||
if (t1) {
|
||||
if (ms4z) {
|
||||
/* 0x00000001 */
|
||||
if (t3)
|
||||
if (ls4s)
|
||||
return 4;
|
||||
|
||||
/* "value" definitely has a start code (0x000001XX), but at this
|
||||
|
|
@ -71,9 +77,9 @@ static inline uint8_t __find_h26x_start(uint32_t value,bool& additional_byte)
|
|||
*
|
||||
* Return 5 to indicate that start length could not be determined
|
||||
* and that caller must check previous dword's last byte for 0x00 */
|
||||
if (t2)
|
||||
if (ls2s)
|
||||
return 5;
|
||||
} else if (t4 && t3) {
|
||||
} else if (ms2z && ls4s) {
|
||||
/* 0xXX000001 */
|
||||
additional_byte = true;
|
||||
return 4;
|
||||
|
|
@ -110,163 +116,180 @@ ssize_t uvgrtp::formats::h26x::find_h26x_start_code(
|
|||
uint8_t *data,
|
||||
size_t len,
|
||||
size_t offset,
|
||||
uint8_t& start_len
|
||||
)
|
||||
uint8_t& start_len)
|
||||
{
|
||||
bool prev_z = false;
|
||||
bool cur_z = false;
|
||||
size_t pos = offset;
|
||||
size_t rpos = len - (len % 8) - 1;
|
||||
uint8_t *ptr = data + offset;
|
||||
uint8_t *tmp = nullptr;
|
||||
uint8_t lb = 0;
|
||||
uint32_t prev = UINT32_MAX;
|
||||
if (data == nullptr || len < offset || len < 1)
|
||||
{
|
||||
UVG_LOG_WARN("Invalid parameter found for start code lookup");
|
||||
return -1;
|
||||
}
|
||||
|
||||
uint64_t prefetch = UINT64_MAX;
|
||||
uint32_t value = UINT32_MAX;
|
||||
bool prev_had_zero = false;
|
||||
bool cur_has_zero = false;
|
||||
size_t pos = offset;
|
||||
size_t last_byte_position = len - (len % 8) - 1;
|
||||
|
||||
/* We can get rid of the bounds check when looping through
|
||||
* non-zero 8 byte chunks by setting the last byte to zero.
|
||||
*
|
||||
* This added zero will make the last 8 byte zero check to fail
|
||||
* and when we get out of the loop we can check if we've reached the end */
|
||||
lb = data[rpos];
|
||||
data[rpos] = 0;
|
||||
uint8_t temp_last_byte = data[last_byte_position];
|
||||
data[last_byte_position] = 0;
|
||||
|
||||
uint32_t prev_value32 = UINT32_MAX;
|
||||
uint32_t cur_value32 = UINT32_MAX;
|
||||
|
||||
uint64_t prefetch64 = UINT64_MAX;
|
||||
|
||||
while (pos + 8 < len) {
|
||||
prefetch = *(uint64_t *)ptr;
|
||||
|
||||
if (!prev_z)
|
||||
if (!prev_had_zero)
|
||||
{
|
||||
|
||||
// since we know that start code prefix has zeros, we find the next dword that has zeros
|
||||
while (!cur_has_zero && pos + 8 < len)
|
||||
{
|
||||
prefetch64 = *(uint64_t*)(data + pos);
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
cur_z = haszero64_le(prefetch);
|
||||
cur_has_zero = haszero64_le(prefetch64);
|
||||
#else
|
||||
cur_z = haszero64_be(prefetch)
|
||||
cur_has_zero = haszero64_be(prefetch64);
|
||||
#endif
|
||||
if (!cur_z) {
|
||||
/* pos is not used in the following loop so it makes little sense to
|
||||
* update it on every iteration. Faster way to do the loop is to save
|
||||
* ptr's current value before loop, update only ptr in the loop and when
|
||||
* the loop is exited, calculate the difference between tmp and ptr to get
|
||||
* the number of iterations done * 8 */
|
||||
tmp = ptr;
|
||||
|
||||
do {
|
||||
ptr += 8;
|
||||
prefetch = *(uint64_t*)ptr;
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
cur_z = haszero64_le(prefetch);
|
||||
#else
|
||||
cur_z = haszero64_be(prefetch);
|
||||
#endif
|
||||
} while (!cur_z);
|
||||
|
||||
pos += PTR_DIFF(ptr, tmp);
|
||||
|
||||
if (pos + 8 >= len)
|
||||
break;
|
||||
if (!cur_has_zero)
|
||||
{
|
||||
pos += 8;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
value = *(uint32_t *)ptr;
|
||||
if (pos + 8 < len)
|
||||
{
|
||||
cur_value32 = *(uint32_t*)(data + pos);
|
||||
}
|
||||
|
||||
if (cur_z)
|
||||
if (cur_has_zero)
|
||||
{
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
cur_z = haszero32_le(value);
|
||||
cur_has_zero = haszero32_le(cur_value32);
|
||||
#else
|
||||
cur_z = haszero32_be(value);
|
||||
cur_has_zero = haszero32_be(cur_value32);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (!prev_z && !cur_z)
|
||||
goto end;
|
||||
|
||||
if (prev_had_zero || cur_has_zero)
|
||||
{
|
||||
/* Previous dword had zeros but this doesn't. The only way there might be a start code
|
||||
* is if the most significant byte of current dword is 0x01 */
|
||||
if (prev_z && !cur_z) {
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
if (prev_had_zero && !cur_has_zero) {
|
||||
/* previous dword: 0xXX000000 or 0xXXXX0000 and current dword 0x01XXXXXX */
|
||||
if (((value >> 0) & 0xff) == 0x01 && ((prev >> 16) & 0xffff) == 0) {
|
||||
start_len = (((prev >> 8) & 0xffffff) == 0) ? 4 : 3;
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
if (((cur_value32 >> 0) & 0xff) == 0x01 && ((prev_value32 >> 16) & 0xffff) == 0) {
|
||||
start_len = (((prev_value32 >> 8) & 0xffffff) == 0) ? 4 : 3;
|
||||
#else
|
||||
if (((value >> 24) & 0xff) == 0x01 && ((prev >> 0) & 0xffff) == 0) {
|
||||
start_len = (((prev >> 0) & 0xffffff) == 0) ? 4 : 3;
|
||||
if (((cur_value32 >> 24) & 0xff) == 0x01 && ((prev_value32 >> 0) & 0xffff) == 0) {
|
||||
start_len = (((prev_value32 >> 0) & 0xffffff) == 0) ? 4 : 3;
|
||||
#endif
|
||||
data[rpos] = lb;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + 1;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// find out if the current value as a whole contains start code prefix
|
||||
bool additional_byte = false;
|
||||
uint8_t ret = __find_h26x_start(value, additional_byte);
|
||||
uint8_t ret = determine_start_prefix_precense(cur_value32, additional_byte);
|
||||
start_len = ret;
|
||||
if (ret > 0) {
|
||||
if (ret == 5) {
|
||||
// ret 5 means we don't know how long the start code is so we check it
|
||||
|
||||
ret = 3;
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
start_len = (((prev >> 24) & 0xff) == 0) ? 4 : 3;
|
||||
start_len = (((prev_value32 >> 24) & 0xff) == 0) ? 4 : 3;
|
||||
#else
|
||||
start_len = (((prev >> 0) & 0xff) == 0) ? 4 : 3;
|
||||
start_len = (((prev_value32 >> 0) & 0xff) == 0) ? 4 : 3;
|
||||
#endif
|
||||
}
|
||||
if (additional_byte) start_len--;
|
||||
data[rpos] = lb;
|
||||
if (additional_byte)
|
||||
{
|
||||
--start_len;
|
||||
}
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + ret;
|
||||
}
|
||||
|
||||
// see if the start code prefix is split between previous and this dword
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
uint16_t u = (value >> 16) & 0xffff;
|
||||
uint16_t l = (value >> 0) & 0xffff;
|
||||
uint16_t p = (prev >> 16) & 0xffff;
|
||||
uint16_t cur_ls = (cur_value32 >> 16) & 0xffff; // current less significant word
|
||||
uint16_t cur_ms = (cur_value32 >> 0) & 0xffff; // corrent more significant word
|
||||
uint16_t prev_ls = (prev_value32 >> 16) & 0xffff; // previous less significant word
|
||||
|
||||
// previous has 4 zeros
|
||||
bool p4z = (prev_ls == 0);
|
||||
|
||||
// previous has 2 zeros
|
||||
bool p2z = (((prev_ls >> 8) & 0xff) == 0);
|
||||
|
||||
// current has 2 bytes of possible start code
|
||||
bool c2s = (((cur_ms >> 8) & 0xff) == 0x01);
|
||||
|
||||
// previous has 4 bytes of possible start code
|
||||
bool c4s = (cur_ms == 0x0100); // current starts with 0001
|
||||
|
||||
// previous has 6 bytes of start code
|
||||
bool c6s = (cur_ms == 0x0000 && (cur_ls & 0xff) == 0x01); // current is 000001XX
|
||||
|
||||
bool t1 = ((p & 0xffff) == 0);
|
||||
bool t2 = (((p >> 8) & 0xff) == 0);
|
||||
bool t4 = (l == 0x0100);
|
||||
bool t5 = (l == 0x0000 && u == 0x01);
|
||||
#else
|
||||
uint16_t u = (value >> 0) & 0xffff;
|
||||
uint16_t l = (value >> 16) & 0xffff;
|
||||
uint16_t p = (prev >> 0) & 0xffff;
|
||||
uint16_t cur_ls = (cur_value32 >> 0) & 0xffff;
|
||||
uint16_t cur_ms = (cur_value32 >> 16) & 0xffff;
|
||||
uint16_t prev_ls = (prev_value32 >> 0) & 0xffff;
|
||||
|
||||
bool t1 = ((p & 0xffff) == 0);
|
||||
bool t2 = ((p & 0xff) == 0);
|
||||
bool t4 = (l == 0x0001);
|
||||
bool t5 = (l == 0x0000 && u == 0x01);
|
||||
bool p4z = (prev_ls == 0);
|
||||
bool p2z = ((prev_ls & 0xff) == 0);
|
||||
bool c2s = ((cur_ms & 0xff) == 0x01);
|
||||
bool c4s = (cur_ms == 0x0001);
|
||||
bool c6s = (cur_ms == 0x0000 && ((cur_ls >> 8) & 0xff) == 0x01);
|
||||
#endif
|
||||
if (t1 && t4) {
|
||||
/* previous dword 0xxxxx0000 and current dword is 0x0001XXXX */
|
||||
if (t4) {
|
||||
// all possible start code modes between two bytes
|
||||
if (p4z) {
|
||||
// previous dword 0xXXXX0000
|
||||
if (c4s) {
|
||||
// current dword is 0x0001XXXX
|
||||
start_len = 4;
|
||||
data[rpos] = lb;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + 2;
|
||||
}
|
||||
/* Previous dwod was 0xXXXXXX00 */
|
||||
} else if (t2) {
|
||||
/* Current dword is 0x000001XX */
|
||||
if (t5) {
|
||||
else if (c2s)
|
||||
{
|
||||
// current dword is 0x01XXXX
|
||||
start_len = 3;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + 2;
|
||||
}
|
||||
|
||||
} else if (p2z) {
|
||||
// Previous dword was 0xXXXXXX00
|
||||
|
||||
if (c6s) {
|
||||
// Current dword is 0x000001XX
|
||||
start_len = 4;
|
||||
data[rpos] = lb;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + 3;
|
||||
}
|
||||
|
||||
/* Current dword is 0x0001XXXX */
|
||||
else if (t4) {
|
||||
else if (c4s) {
|
||||
// Current dword is 0x0001XXXX
|
||||
start_len = 3;
|
||||
data[rpos] = lb;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return pos + 2;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
end:
|
||||
prev_z = cur_z;
|
||||
|
||||
prev_had_zero = cur_has_zero;
|
||||
pos += get_start_code_range();
|
||||
ptr += get_start_code_range();
|
||||
prev = value;
|
||||
prev_value32 = cur_value32;
|
||||
}
|
||||
|
||||
data[rpos] = lb;
|
||||
data[last_byte_position] = temp_last_byte;
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue